A COHERENCE THEOREM FOR PSEUDO SYMMETRIC MULTIFUNCTORS

被引:0
作者
Manco, Diego [1 ]
机构
[1] Univ Western Ontario, Dept Math, 2004 Perth Dr, London, ON N6G 2V4, Canada
来源
THEORY AND APPLICATIONS OF CATEGORIES | 2024年 / 41卷
关键词
Multicategories; K-theory; K-THEORY; ALGEBRAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Donald Yau defined the notion of pseudo symmetric Cat- enriched multifunctor between Cat- enriched multicategories and proved that Mandell's inverse Ktheory multifunctor is pseudo symmetric. We prove a coherence theorem for pseudo symmetric Cat- enriched multifunctors. As an application we prove that pseudo symmetric Cat- enriched multifunctors, and in particular Mandell's inverse K-theory, preserve Sigma-free E-n-algebras (n = 1, 2, ..., infinity ), at the cost of changing the parameterizing Sigma-free E-n-operad O for the Sigma-free E-n-operad O x E Sigma(& lowast;).
引用
收藏
页数:36
相关论文
共 22 条
  • [1] Iterated monoidal categories
    Balteanu, C
    Fiedorowicz, Z
    Schwänzl, R
    Vogt, R
    [J]. ADVANCES IN MATHEMATICS, 2003, 176 (02) : 277 - 349
  • [2] Cellular operads and iterated loop spaces
    Berger, C
    [J]. ANNALES DE L INSTITUT FOURIER, 1996, 46 (04) : 1125 - &
  • [3] Derived Koszul duality and involutions in the algebraic K-theory of spaces
    Blumberg, Andrew J.
    Mandell, Michael A.
    [J]. JOURNAL OF TOPOLOGY, 2011, 4 (02) : 327 - 342
  • [4] Bousfield A.K., 1978, LECT NOTES MATH, V658, P80, DOI DOI 10.1007/BFB0068711.2.3,3
  • [5] Cisinski Denis-Charles, 1999, CAHIERS TOPOLOGIE GE, V40, P227
  • [6] Rings, modules, and algebras in infinite loop space theory
    Elmendorf, A. D.
    Mandell, M. A.
    [J]. ADVANCES IN MATHEMATICS, 2006, 205 (01) : 163 - 228
  • [7] Elmendorf A.D., 2021, PREPRINT
  • [8] Multiplicative equivariant K-theory and the Barratt-Priddy-Quillen theorem
    Guillou, Bertrand J.
    May, J. Peter
    Merling, Mona
    Osorno, Angelica M.
    [J]. ADVANCES IN MATHEMATICS, 2023, 414
  • [9] Gurski N., 2024, High. Struct., V8, P244
  • [10] ON COHERENT ALGEBRAS AND STRICT ALGEBRAS
    ISBELL, JR
    [J]. JOURNAL OF ALGEBRA, 1969, 13 (03) : 299 - &