mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes

被引:1
作者
Zwakenberg, Susan [1 ]
Westland, Denise [1 ]
van Es, Robert M. [1 ]
Rehmann, Holger [2 ]
Anink, Jasper [3 ]
Ciapaite, Jolita [4 ]
Bosma, Marjolein [4 ]
Stelloo, Ellen [1 ]
Liv, Nalan [1 ]
Alcaraz, Paula Sobrevals [1 ]
Verhoeven-Duif, Nanda M. [4 ]
Jans, Judith J. M. [4 ]
Vos, Harmjan R. [1 ]
Aronica, Eleonora [3 ,5 ]
Zwartkruis, Fried J. T. [1 ,6 ]
机构
[1] Univ Med Ctr Utrecht, Ctr Mol Med, Univ weg 100, NL-3584 CG Utrecht, Netherlands
[2] Flensburg Univ Appl Sci, Dept Energy & Life Sci, Flensburg, Germany
[3] Univ Amsterdam, Dept Neuro Pathol, Amsterdam UMC, Amsterdam Neurosci, Amsterdam, Netherlands
[4] Univ Med Ctr Utrecht, Sect Metab Diagnost, Dept Genet, NL-3584 EA Utrecht, Netherlands
[5] Stichting Epilepsie Instellingen Nederland SEIN, Heemstede, Netherlands
[6] Oncode Inst, Utrecht, Netherlands
基金
荷兰研究理事会;
关键词
AMINO-ACID SUFFICIENCY; P70; S6; KINASE; TUMOR-SUPPRESSOR; RAG GTPASES; SOMATIC MUTATIONS; ACTIVATION; COMPLEX; FOLLICULIN; CANCER; GROWTH;
D O I
10.1016/j.molcel.2024.10.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypophosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
引用
收藏
页码:4368 / 4384.e6
页数:24
相关论文
共 22 条
  • [1] Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3
    Li, Kristina
    Wada, Shogo
    Gosis, Bridget S.
    Thorsheim, Chelsea
    Loose, Paige
    Arany, Zolt
    PLOS BIOLOGY, 2022, 20 (03)
  • [2] mTORC1 activity licenses its own release from the lysosomal surface
    Acharya, Aishwarya
    Demetriades, Constantinos
    MOLECULAR CELL, 2024, 84 (22) : 4385 - 4400.e7
  • [3] The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity
    Hao, Feike
    Itoh, Takashi
    Morita, Eiji
    Shirahama-Noda, Kanae
    Yoshimori, Tamotsu
    Noda, Takeshi
    FEBS LETTERS, 2016, 590 (01) : 161 - 173
  • [4] Folliculin Interacting Protein 1 Maintains Metabolic Homeostasis during B Cell Development by Modulating AMPK, mTORC1, and TFE3
    Ramirez, Julita A.
    Iwata, Terri
    Park, Heon
    Tsang, Mark
    Kang, Janella
    Cui, Katy
    Kwong, Winnie
    James, Richard G.
    Baba, Masaya
    Schmidt, Laura S.
    Iritani, Brian M.
    JOURNAL OF IMMUNOLOGY, 2019, 203 (11) : 2899 - 2908
  • [5] Amino Acids Enhance Polyubiquitination of Rheb and Its Binding to mTORC1 by Blocking Lysosomal ATXN3 Deubiquitinase Activity
    Yao, Yao
    Hong, Sungki
    Ikeda, Takayuki
    Mori, Hiroyuki
    MacDougald, Ormond A.
    Nada, Shigeyuki
    Okada, Masato
    Inoki, Ken
    MOLECULAR CELL, 2020, 80 (03) : 437 - +
  • [6] Oncolytic Avian Reovirus p17-Modulated Inhibition of mTORC1 by Enhancement of Endogenous mTORC1 Inhibitors Binding to mTORC1 To Disrupt Its Assembly and Accumulation on Lysosomes
    Li, Jyun-Yi
    Huang, Wei-Ru
    Liao, Tsai-Ling
    Nielsen, Brent L.
    Liu, Hung-Jen
    JOURNAL OF VIROLOGY, 2022, 96 (17)
  • [7] G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling
    Prentzell, Mirja Tamara
    Rehbein, Ulrike
    Sandoval, Marti Cadena
    De Meulemeester, Ann-Sofie
    Baumeister, Ralf
    Brohee, Laura
    Berdel, Bianca
    Bockwoldt, Mathias
    Carroll, Bernadette
    Chowdhury, Suvagata Roy
    von Deimling, Andreas
    Demetriades, Constantinos
    Figlia, Gianluca
    de Araujo, Mariana Eca Guimaraes
    Heberle, Alexander M.
    Heiland, Ines
    Holzwarth, Birgit
    Huber, Lukas A.
    Jaworski, Jacek
    Kedra, Magdalena
    Kern, Katharina
    Kopach, Andrii
    Korolchuk, Viktor, I
    van't Land-Kuper, Ineke
    Macias, Matylda
    Nellist, Mark
    Palm, Wilhelm
    Pusch, Stefan
    Pittol, Jose Miguel Ramos
    Reil, Michele
    Reintjes, Anja
    Reuter, Friederike
    Sampson, Julian R.
    Scheldeman, Chloe
    Siekierska, Aleksandra
    Stefan, Eduard
    Teleman, Aurelio A.
    Thomas, Laura E.
    Torres-Quesada, Omar
    Trump, Saskia
    West, Hannah D.
    de Witte, Peter
    Woltering, Sandra
    Yordanov, Teodor E.
    Zmorzynska, Justyna
    Opitz, Christiane A.
    Thedieck, Kathrin
    CELL, 2021, 184 (03) : 655 - +
  • [8] AKT inhibition-mediated dephosphorylation of TFE3 promotes overactive autophagy independent of MTORC1 in cadmium-exposed bone mesenchymal stem cells
    Pi, Huifeng
    Li, Min
    Zou, Lingyun
    Yang, Min
    Deng, Ping
    Fang, Tengfei
    Liu, Menyu
    Tian, Li
    Tu, Manyu
    Xie, Jia
    Chen, Mengyan
    Li, Huijuan
    Xi, Yu
    Zhang, Lei
    He, Mindi
    Lu, Yonghui
    Chen, Chunhai
    Zhang, Tao
    Wang, Zheng
    Yu, Zhengping
    Gao, Feng
    Zhou, Zhou
    AUTOPHAGY, 2019, 15 (04) : 565 - 582
  • [9] A two-pore channel protein required for regulating mTORC1 activity on starvation
    Chang, Fu-Sheng
    Wang, Yuntao
    Dmitriev, Phillip
    Gross, Julian
    Galione, Antony
    Pears, Catherine
    BMC BIOLOGY, 2020, 18 (01)
  • [10] S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1
    Ben-Hur, Vered
    Denichenko, Polina
    Siegfried, Zahava
    Maimon, Avi
    Krainer, Adrian
    Davidson, Ben
    Karni, Rotem
    CELL REPORTS, 2013, 3 (01): : 103 - 115