Distinct explanations underlie gene-environment interactions in the UK Biobank

被引:1
|
作者
Durvasula, Arun [1 ,2 ,3 ,4 ]
Price, Alkes L. [4 ,5 ,6 ]
机构
[1] Univ Southern Calif, Ctr Genet Epidemiol, Keck Sch Med, Dept Populat & Publ Hlth Sci, Los Angeles, CA 90007 USA
[2] Harvard Univ, Sch Med, Dept Genet, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02138 USA
[6] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; SEX-DIFFERENCES; PHENOTYPIC VARIABILITY; SUSCEPTIBILITY LOCI; HERITABILITY; DISEASES; EFFICIENT; SCHIZOPHRENIA; PROPORTION; GENOTYPE;
D O I
10.1016/j.ajhg.2025.01.014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (r(g)) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r(g) significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.
引用
收藏
页码:644 / 658
页数:16
相关论文
共 50 条
  • [1] Parkinson's disease determinants, prediction and gene-environment interactions in the UK Biobank
    Jacobs, Benjamin Meir
    Belete, Daniel
    Bestwick, Jonathan
    Blauwendraat, Cornelis
    Bandres-Ciga, Sara
    Heilbron, Karl
    Dobson, Ruth
    Nalls, Mike A.
    Singleton, Andrew
    Hardy, John
    Giovannoni, Gavin
    Lees, Andrew John
    Schrag, Anette-Eleonore
    Noyce, Alastair J.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2020, 91 (10) : 1046 - 1054
  • [2] Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank
    Hillary, Robert F.
    Gadd, Danni A.
    Kuncheva, Zhana
    Mangelis, Tasos
    Lin, Tinchi
    Ferber, Kyle
    Mclaughlin, Helen
    Runz, Heiko
    Marshall, Eric
    Marioni, Riccardo E.
    Foley, Christopher N.
    Sun, Benjamin B.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] Childhood Adoption and Mental Health in Adulthood: The Role of Gene-Environment Correlations and Interactions in the UK Biobank
    Lehto, Kelli
    Hagg, Sara
    Lu, Donghao
    Karlsson, Robert
    Pedersen, Nancy L.
    Mosing, Miriam A.
    BIOLOGICAL PSYCHIATRY, 2020, 87 (08) : 708 - 716
  • [4] Comparison of Adopted and Nonadopted Individuals Reveals Gene-Environment Interplay for Education in the UK Biobank
    Cheesman, Rosa
    Hunjan, Avina
    Coleman, Jonathan R. I.
    Ahmadzadeh, Yasmin
    Plomin, Robert
    McAdams, Tom A.
    Eley, Thalia C.
    Breen, Gerome
    PSYCHOLOGICAL SCIENCE, 2020, 31 (05) : 582 - 591
  • [5] Gene-Environment Interactions for Cardiovascular Disease
    Hartiala, Jaana A.
    Hilser, James R.
    Biswas, Subarna
    Lusis, Aldons J.
    Allayee, Hooman
    CURRENT ATHEROSCLEROSIS REPORTS, 2021, 23 (12)
  • [6] Gene-Environment Interactions and Gene-Gene Interactions on Two Biological Age Measures: Evidence from Taiwan Biobank Participants
    Lin, Wan-Yu
    ADVANCED BIOLOGY, 2024, 8 (07):
  • [7] Candidate gene-environment interactions in breast cancer
    Fletcher, Olivia
    Dudbridge, Frank
    BMC MEDICINE, 2014, 12
  • [8] Associations between electronic devices use and common mental traits: A gene-environment interaction model using the UK Biobank data
    Ye, Jing
    Cheng, Shiqiang
    Chu, Xiaomeng
    Wen, Yan
    Cheng, Bolun
    Liu, Li
    Liang, Chujun
    Kafle, Om Prakash
    Jia, Yumeng
    Wu, Cuiyan
    Wang, Sen
    Wang, Xi
    Ning, Yujie
    Zhang, Feng
    ADDICTION BIOLOGY, 2022, 27 (02)
  • [9] Key Considerations and Methods in the Study of Gene-Environment Interactions
    Simon, Paul H. G.
    Sylvestre, Marie-Pierre
    Tremblay, Johanne
    Hamet, Pavel
    AMERICAN JOURNAL OF HYPERTENSION, 2016, 29 (08) : 891 - 899
  • [10] The heritable basis of gene-environment interactions in cardiometabolic traits
    Poveda, Alaitz
    Chen, Yan
    Brandstrom, Anders
    Engberg, Elisabeth
    Hallmans, Goran
    Johansson, Ingegerd
    Renstrom, Frida
    Kurbasic, Azra
    Franks, Paul W.
    DIABETOLOGIA, 2017, 60 (03) : 442 - 452