Mean topological dimension of induced amenable group actions

被引:0
|
作者
Shi, Ruxi [1 ]
Zhang, Guohua [2 ,3 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
关键词
THEOREMS; ENTROPY;
D O I
10.1016/j.jde.2025.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize [3, Main Theorem] from actions of a single transformation to amenable group actions, which answers affirmatively the question raised in [3] by Burguet and the first-named author of the paper. (c) 2025 Published by Elsevier Inc.
引用
收藏
页码:827 / 842
页数:16
相关论文
共 50 条
  • [31] TOPOLOGICAL MEAN DIMENSION OF INDUCED SYSTEMS
    Burguet, David
    Shi, Ruxi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [32] AMENABLE WREATH PRODUCTS WITH NON ALMOST FINITE ACTIONS OF MEAN DIMENSION ZERO
    Joseph, Matthieu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 1321 - 1333
  • [33] Amenable metric mean dimension and amenable mean Hausdorff dimension of product sets and metric varying
    Li, Xianqiang
    Luo, Xiaofang
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [34] Variational principle of higher dimension weighted pressure for amenable group actions
    Yin, Zhengyu
    Xiao, Zubiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [35] Mean Proximality, Mean Sensitivity and Mean Li-Yorke Chaos for Amenable Group Actions
    Yan, Kesong
    Zeng, Fanping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (02):
  • [36] Topological pressure for sub-additive potentials of amenable group actions
    Liang, Bingbing
    Yan, Kesong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (02) : 584 - 601
  • [37] The variational principle of topological r-pressure for amenable group actions
    Wang, Qiong
    Zhang, Ruifeng
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (03): : 500 - 522
  • [38] Radius of comparison and mean topological dimension: Zd-actions
    Niu, Zhuang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (04): : 1240 - 1266
  • [39] Multiorders in amenable group actions
    Downarowicz, Tomasz
    Oprocha, Piotr
    Wiecek, Mateusz
    Zhang, Guohua
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 25 - 65
  • [40] Relative uniformly positive entropy of induced amenable group actions
    Liu, Kairan
    Wei, Runju
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (02) : 569 - 593