Mean topological dimension of induced amenable group actions

被引:0
|
作者
Shi, Ruxi [1 ]
Zhang, Guohua [2 ,3 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
关键词
THEOREMS; ENTROPY;
D O I
10.1016/j.jde.2025.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize [3, Main Theorem] from actions of a single transformation to amenable group actions, which answers affirmatively the question raised in [3] by Burguet and the first-named author of the paper. (c) 2025 Published by Elsevier Inc.
引用
收藏
页码:827 / 842
页数:16
相关论文
共 50 条
  • [1] Mean topological dimension for actions of discrete amenable groups
    Coornaert, M
    Krieger, F
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 779 - 793
  • [2] Topological Entropy Dimension of Amenable Group Actions for Noncompact Sets
    Liu, Lei
    Jiao, Jinlei
    Zhou, Xiaoyao
    FRONTIERS OF MATHEMATICS, 2025, 20 (02): : 375 - 401
  • [3] Upper metric mean dimension with potential for amenable group actions
    Chen, Hu
    Li, Zhiming
    STUDIA MATHEMATICA, 2025, 280 (03) : 269 - 304
  • [4] Sequence entropies and mean sequence dimension for amenable group actions
    Gao Junming
    Huang Xiaojun
    Zhu Changrong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9404 - 9431
  • [5] Weighted upper metric mean dimension for amenable group actions
    Tang, Dingxuan
    Wu, Haiyan
    Li, Zhiming
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (03): : 382 - 397
  • [6] Mean dimension and a non-embeddable example for amenable group actions
    Jin, Lei
    Park, Kyewon Koh
    Qiao, Yixiao
    FUNDAMENTA MATHEMATICAE, 2022, 257 (01) : 19 - 38
  • [7] Variational principle of metric mean dimension and rate distortion dimension for amenable group actions
    Li, Junye
    Ji, Yong
    Zhan, Tian
    Zhang, Yuanyuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
  • [8] Amenable groups, mean topological dimension and subshifts
    Krieger, Fabrice
    GEOMETRIAE DEDICATA, 2006, 122 (01) : 15 - 31
  • [9] Localized topological pressure for amenable group actions
    Wang, Yunping
    Zhao, Cao
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [10] Localized topological pressure for amenable group actions
    Yunping Wang
    Cao Zhao
    Analysis and Mathematical Physics, 2022, 12