Thermodynamic stability descriptor of A2BX6-type perovskite materials

被引:0
作者
Yang, Xiaoxia [1 ,2 ]
Han, Yi [1 ,2 ]
Xu, Peng [3 ]
Liu, Fuxiang [1 ,2 ]
机构
[1] China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, TGMRC, Yichang 443002, Peoples R China
[3] China Three Gorges Univ, Res Inst Magnetoelect & Weak Magnet field Detect, Coll Sci, Dept Phys, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite; First principles; Machine learning; Symbolic regression; TOTAL-ENERGY CALCULATIONS; PERFORMANCE; EFFICIENT; IMPROVES; HALIDES; TRENDS; BR; CL;
D O I
10.1016/j.matchemphys.2024.130324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The toxicity issue and unsatisfactory thermodynamic stability of Pb-based perovskites pose the most critical challenge for practical commercialization. Among the remaining alternatives, A(2)BX(6)-type vacancy ordered double perovskites have attracted significant attention. With the success achieved by A(2)BX(6)-type materials, the design of stable and non-toxic A(2)BX(6)-type materials has consistently remained a prominent concern. The incorporation of stability descriptors has played a crucial role in the design and exploration of conventional single and double perovskites. However, due to the significantly more relaxed arrangement exhibited by the octahedral structure of A(2)BX(6) compared to that of ABX(3) and A(2)B(1)B(3)X(6), traditional descriptors have proven ineffective in establishing a structure-stability relationship for A(2)BX(6). An explicit descriptor for the stability of A(2)BX(6)-type perovskite materials in this study has been developed through the utilization of symbolic regression algorithm. The accuracy of similar to 90 %, which is significantly higher than traditional stability descriptors, and also comparable to that of black-box machine learning models. The utilization of this efficient descriptor facilitates the design stable vacancy ordered double perovskite materials.
引用
收藏
页数:10
相关论文
共 70 条
  • [1] Study of the f0(980) and f0(500) Scalar Mesons through the Decay Ds+ → π+π-e+νe
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Batozskaya, V.
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, T. T.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (14)
  • [2] Heterojunction of MXenes and MN4-graphene: Machine learning to accelerate the design of bifunctional oxygen electrocatalysts
    Bai, Xue
    Lu, Sen
    Song, Pei
    Jia, Zepeng
    Gao, Zhikai
    Peng, Tiren
    Wang, Zhiguo
    Jiang, Qi
    Cui, Hong
    Tian, Weizhi
    Feng, Rong
    Liang, Zhiyong
    Kang, Qin
    Yuan, Hongkuan
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 664 : 716 - 725
  • [3] New tolerance factor to predict the stability of perovskite oxides and halides
    Bartel, Christopher J.
    Sutton, Christopher
    Goldsmith, Bryan R.
    Ouyang, Runhai
    Musgrave, Charles B.
    Ghiringhelli, Luca M.
    Scheffler, Matthias
    [J]. SCIENCE ADVANCES, 2019, 5 (02)
  • [4] Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X = Cl, Br): A probe from density functional theory (DFT)
    Bhamu, K. C.
    Soni, Amit
    Sahariya, Jagrati
    [J]. SOLAR ENERGY, 2018, 162 : 336 - 343
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [6] Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime
    Braham, Erick J.
    Cho, Junsang
    Forlano, Kristel M.
    Watson, David F.
    Arroyave, Raymundo
    Banerjee, Sarbajit
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (09) : 3281 - 3292
  • [7] Sequential deposition as a route to high-performance perovskite-sensitized solar cells
    Burschka, Julian
    Pellet, Norman
    Moon, Soo-Jin
    Humphry-Baker, Robin
    Gao, Peng
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. NATURE, 2013, 499 (7458) : 316 - +
  • [8] Computational Study of Halide Perovskite-Derived A2BX6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability
    Cai, Yao
    Xie, Wei
    Ding, Hong
    Chen, Yan
    Thirumal, Krishnamoorthy
    Wong, Lydia H.
    Mathews, Nripan
    Mhaisalkar, Subodh G.
    Sherburne, Matthew
    Asta, Mark
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7740 - 7749
  • [9] A Critical Review of Machine Learning of Energy Materials
    Chen, Chi
    Zuo, Yunxing
    Ye, Weike
    Li, Xiangguo
    Deng, Zhi
    Ong, Shyue Ping
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (08)
  • [10] Identifying descriptors for perovskite structure of composite oxides and inferring formability via low-dimensional described features
    Chen, Lanping
    Xia, Wenjie
    Yao, Taizhong
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 226