MILNE-TYPE INEQUALITIES FOR h- CONVEX FUNCTIONS

被引:1
作者
Benaissa, Bouharket [1 ]
Sarikaya, Mehmet Zeki [2 ]
机构
[1] Univ Tiaret, Fac Mat Sci, Lab Informat & Math, POB 78, Tiaret, Algeria
[2] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
关键词
h- convex function; conformable fractional integral operators; Milne's inequality;
D O I
10.14321/realanalexch.49.2.1709554687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Milne-type inequalities for h- convex functions involving conformable operators are established. Additionally, new results are presented that generalize various known inequalities.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 9 条
[1]  
Breckner W.W., 1978, Publ. Inst. Math. (Beograd) (N.S.), V23, P13
[2]  
Budak H., 2023, PREPRINT
[3]   MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS [J].
Djenaoui, Meriem ;
Meftah, Badreddine .
HONAM MATHEMATICAL JOURNAL, 2022, 44 (03) :325-338
[4]  
Dragomir S. S., 1995, Some inequalities of Hadamard type, V21, P335
[5]   On a new class of fractional operators [J].
Jarad, Fahd ;
Ugurlu, Ekin ;
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[6]  
Mitrinovic D.S., 1993, CLASSICAL NEW INEQUA, V61, DOI DOI 10.1007/978-94-017-1043-5
[7]   P-functions, quasi-convex functions, and Hadamard-type inequalities [J].
Pearce, CEM ;
Rubinov, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :92-104
[8]   On h-convexity [J].
Varosanec, Sanja .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :303-311
[9]   On Conformable Fractional Milne-Type Inequalities [J].
Ying, Rui ;
Lakhdari, Abdelghani ;
Xu, Hongyan ;
Saleh, Wedad ;
Meftah, Badreddine .
SYMMETRY-BASEL, 2024, 16 (02)