Singular Initial Value Problems for Some Quasi-Linear Second-Order Ordinary Differential Equations

被引:0
|
作者
Seiler, Werner M. [1 ]
Seiss, Matthias [1 ]
机构
[1] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
关键词
Implicit differential equations; Initial value problems; Vessiot distribution; Singularities; Generalised solutions; Existence; Uniqueness; Regularity;
D O I
10.1007/s10884-024-10396-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence, (non-)uniqueness and regularity of one- and two-sided solutions of singular initial value problems for second-order quasi-linear differential equations of the form g(u)u ''=f(x,u,u ')\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u)u''=f(x,u,u')$$\end{document} with initial conditions u(y)=c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(y)=c_{0}$$\end{document} and u '(y)=c1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u'(y)=c_{1}$$\end{document} where c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{0}$$\end{document} is a simple zero of g and f(y,c0,c1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(y,c_{0},c_{1})=0$$\end{document}. Our approach is based on the geometric theory of differential equations and in particular on singularity theory.
引用
收藏
页数:23
相关论文
共 50 条