Prediction Model for Polyneuropathy in Recent-Onset Diabetes Based on Serum Neurofilament Light Chain, Fibroblast Growth Factor-19 and Standard Anthropometric and Clinical Variables

被引:0
作者
Maalmi, Haifa [1 ,2 ]
Nguyen, Phong B. H. [2 ,3 ,4 ]
Strom, Alexander [1 ,2 ]
Boenhof, Gidon J. [1 ,2 ,5 ,6 ]
Rathmann, Wolfgang [2 ,7 ]
Ziegler, Dan [1 ,2 ,5 ,6 ]
Menden, Michael P. [2 ,3 ,4 ]
Roden, Michael [1 ,2 ,5 ,6 ]
Herder, Christian [1 ,2 ,5 ,6 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Clin Diabetol, German Diabet Ctr DDZ, Leibniz Ctr Diabet Res, Dusseldorf, Germany
[2] German Ctr Diabet Res DZD, Neuherberg, Germany
[3] Helmholtz Ctr Munich, Dept Computat Hlth, Neuherberg, Germany
[4] Ludwig Maximilians Univ Munchen, Dept Biol, Martinsried, Germany
[5] Heinrich Heine Univ Dusseldorf, Med Fac, Dept Endocrinol & Diabetol, Dusseldorf, Germany
[6] Heinrich Heine Univ Dusseldorf, Univ Hosp Dusseldorf, Dusseldorf, Germany
[7] Heinrich Heine Univ Dusseldorf, Inst Biometr & Epidemiol, German Diabet Ctr DDZ, Leibniz Ctr Diabet Res, Dusseldorf, Germany
关键词
diabetes; diabetic neuropathy; inflammation; machine learning; nerve conduction study; neurological biomarkers; peripheral nervous system; peripheral neuropathy; quantitative sensory tests; NEUROPATHY;
D O I
10.1002/dmrr.70009
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundDiabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN.MethodsUsing the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood samples of 423 individuals with recent-onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on the Toronto Consensus Criteria. We constructed (i) a protein-based prediction model using LASSO logistic regression, (ii) an optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both. All models were bootstrapped to assess the robustness, and optimism-corrected AUCs (95% CI) were reported.ResultsDSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain (NFL) and fibroblast growth factor-19 (FGF-19) as the most predictive protein biomarkers for detecting DSPN in individuals with recent-onset diabetes. The protein-based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79).ConclusionWe developed a prediction model for DSPN in recent-onset diabetes based on two protein biomarkers and five standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be used to inform the referral of patients for further testing.
引用
收藏
页数:8
相关论文
共 34 条
[2]   Risk Factors for Incident Diabetic Polyneuropathy in a Cohort With Screen-Detected Type 2 Diabetes Followed for 13 Years: ADDITION-Denmark [J].
Andersen, Signe T. ;
Witte, Daniel R. ;
Dalsgaard, Else-Marie ;
Andersen, Henning ;
Nawroth, Peter ;
Fleming, Thomas ;
Jensen, Troels M. ;
Finnerup, Nanna B. ;
Jensen, Troels S. ;
Lauritzen, Torsten ;
Feldman, Eva L. ;
Callaghan, Brian C. ;
Charles, Morten .
DIABETES CARE, 2018, 41 (05) :1068-1075
[3]  
Au EH, 2020, KIDNEY INT, V97, P877, DOI [10.1016/j.kint.2020.02.007, 10.1016/j.kint.2020.02.007]
[4]   Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy [J].
Boenhof, Gidon J. ;
Herder, Christian ;
Strom, Alexander ;
Papanas, Nikolaos ;
Roden, Michael ;
Ziegler, Dan .
ENDOCRINE REVIEWS, 2019, 40 (01) :153-192
[5]   A clinical screening score for diabetic polyneuropathy: KORA F4 and AusDiab Studies [J].
Bongaerts, B. W. C. ;
Ziegler, D. ;
Shaw, J. E. ;
Heier, M. ;
Kowall, B. ;
Herder, C. ;
Roden, M. ;
Peters, A. ;
Meisinger, C. ;
Rathmann, W. .
JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2015, 29 (01) :44-49
[6]  
Boulton AJ., 2005, Clin Diabetes, V23, P9, DOI [DOI 10.2337/DIACLIN.23.1.9, 10.2337/diaclin.23.1.9]
[7]   Prevalence and the associated burden of illness of symptoms of diabetic peripheral neuropathy and diabetic retinopathy [J].
Candrilli, Sean D. ;
Davis, Keith L. ;
Kan, Hong J. ;
Lucero, Melanie A. ;
Rousculp, Matthew D. .
JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2007, 21 (05) :306-314
[8]   Prognostic model for atrial fibrillation after cardiac surgery: a UK cohort study [J].
Chung, Sheng-Chia ;
O'Brien, Benjamin ;
Lip, Gregory Y. H. ;
Fields, Kara G. ;
Muehlschlegel, Jochen D. ;
Thakur, Anshul ;
Clifton, David ;
Collins, Gary S. ;
Watkinson, Peter ;
Providencia, Rui .
CLINICAL RESEARCH IN CARDIOLOGY, 2023, 112 (02) :227-235
[9]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.7326/M14-0698, 10.1186/s12916-014-0241-z, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1002/bjs.9736, 10.1016/j.jclinepi.2014.11.010]
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845