Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress

被引:1
|
作者
Ma, Bin [1 ]
Song, Yan [1 ]
Feng, Xinghua [1 ]
Guo, Pu [1 ]
Zhou, Lianxia [1 ]
Jia, Sijin [1 ]
Guo, Qingxun [1 ,2 ]
Zhang, Chunyu [1 ,2 ]
机构
[1] Jilin Univ, Coll Plant Sci, Dept Hort, Changchun 130062, Peoples R China
[2] Jilin Univ, Coll Plant Sci, Jilin Engn Res Ctr Crop Biotechnol Breeding, Changchun 130062, Peoples R China
基金
中国国家自然科学基金;
关键词
blueberry; metabolome; transcriptome; salt stress; flavonoids; FLAVANONE 3-HYDROXYLASE GENE; VACCINIUM-CORYMBOSUM L; FINGER PROTEIN ZAT12; PHENOLIC-COMPOUNDS; SALINITY STRESS; ANTHOCYANIN BIOSYNTHESIS; FUNCTIONAL-ANALYSIS; REACTIVE OXYGEN; TOLERANCE; EXPRESSION;
D O I
10.3390/horticulturae10101084
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The flavonoids play important roles in plant salt tolerance. Blueberries (Vaccinium spp.) are extremely sensitive to soil salt increases. Therefore, improving the salt resistance of blueberries by increasing the flavonoid content is crucial for the development of the blueberry industry. To explore the underlying molecular mechanism, we performed an integrated analysis of the metabolome and transcriptome of blueberry leaves under salt stress. We identified 525 differentially accumulated metabolites (DAMs) under salt stress vs. control treatment, primarily including members of the flavonoid class. We also identified 20,920 differentially expressed genes (DEGs) based on transcriptome data; of these, 568 differentially expressed transcription factors (TFs) were annotated, and bHLH123, OsHSP20, and HSP20 TFs might be responsible for blueberry leaf salt tolerance. DEGs involved in the flavonoid biosynthesis pathway were significantly enriched at almost all stages of salt stress. Salt treatment upregulated the expression of most flavonoid biosynthetic pathway genes and promoted the accumulation of flavonols, flavonol glycosides, flavans, proanthocyanidins, and anthocyanins. Correlation analysis suggested that 4-coumarate CoA ligases (4CL5 and 4CL1) play important roles in the accumulation of flavonols (quercetin and pinoquercetin) and flavan-3-ol (epicatechin and prodelphinidin C2) under salt stress, respectively. The flavonoid 3 ' 5 '-hydroxylases (F3 ' 5 ' H) regulate anthocyanin (cyanidin 3-O-beta-D-sambubioside and delphinidin-3-O-glucoside chloride) biosynthesis, and leucoanthocyanidin reductases (LAR) are crucial for the biosynthesis of epicatechin and prodelphinidin C2 during salt stress. Taken together, it is one of the future breeding goals to cultivate salt-resistant blueberry varieties by increasing the expression of flavonoid biosynthetic genes, especially 4CL, F3 ' 5 ' H, and LAR genes, to promote flavonoid content in blueberry leaves.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress
    Feng, Xinghua
    Bai, Sining
    Zhou, Lianxia
    Song, Yan
    Jia, Sijin
    Guo, Qingxun
    Zhang, Chunyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [2] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [3] Integrated transcriptome and metabolome analyses revealed regulatory mechanisms of flavonoid biosynthesis in Radix Ardisia
    Liu, Chang
    Pan, Jie
    Yin, Zhi-Gang
    Feng, Tingting
    Zhao, Jiehong
    Dong, Xiu
    Zhou, Ying
    PEERJ COMPUTER SCIENCE, 2022, 10
  • [4] Integrated transcriptome and metabolome analyses revealed regulatory mechanisms of flavonoid biosynthesis in Radix Ardisia
    Liu, Chang
    Pan, Jie
    Yin, Zhi-Gang
    Feng, Tingting
    Zhao, Jiehong
    Dong, Xiu
    Zhou, Ying
    PEERJ, 2022, 10
  • [5] Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions
    Bai, Jianhui
    Lu, Peina
    Li, Feng
    Li, Lijun
    Yin, Qiang
    AGRONOMY-BASEL, 2023, 13 (06):
  • [6] Integrated Untargeted Metabolome, Full-Length Sequencing and Transcriptome Analyses Reveal the Mechanism of Flavonoid Biosynthesis in Blueberry (Vaccinium spp.) Fruit
    Tian, Youwen
    Liu, Xinlei
    Chen, Xuyang
    Wang, Bowei
    Dong, Mei
    Chen, Li
    Yang, Zhengsong
    Li, Yadong
    Sun, Haiyue
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (08)
  • [7] An Integrated Metabolome and Transcriptome Analysis Reveal the Regulation Mechanisms of Flavonoid Biosynthesis in a Purple Tea Plant Cultivar
    Song, SaSa
    Tao, Yu
    Gao, LongHan
    Liang, HuiLing
    Tang, DeSong
    Lin, Jie
    Wang, YuChun
    Gmitter, Frederick G.
    Li, ChunFang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [8] Transcriptome and Flavonoid Compounds Metabolome Analyses Reveal the Mechanisms of Heat Stress in Rhododendron with Exogenously Applied Calcium
    Shen, Jianshuang
    Rong, Xianlin
    Li, Xueqin
    Ma, Yulei
    Cheng, Hefeng
    Sheng, Jiaran
    Huang, Lu
    Jin, Songheng
    AGRONOMY-BASEL, 2024, 14 (06):
  • [9] Integration of morphological, physiological, cytological, metabolome and transcriptome analyses reveal age inhibited accumulation of flavonoid biosynthesis in Ginkgo biloba leaves
    Wang, Qingjie
    Jiang, Yang
    Mao, Xinyu
    Yu, Wanwen
    Lu, Jinkai
    Wang, Li
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 187
  • [10] Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities
    Zhang, Jiaying
    Li, Shuigen
    An, Haishan
    Zhang, Xueying
    Zhou, Boqiang
    FRONTIERS IN PLANT SCIENCE, 2022, 13