On domination numbers of zero-divisor graphs of commutative rings

被引:1
作者
Anderson, Sarah E. [1 ]
Axtell, Michael C. [1 ]
Kroschel, Brenda K. [1 ]
Stickles, Joe A. [2 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN 55105 USA
[2] Millikin Univ, Sch Math & Computat Sci, Decatur, IL USA
关键词
zero divisor graph; commutative rings; domination; total domination;
D O I
10.5614/ejgta.2024.12.2.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zero-divisor graphs of a commutative ring R, denoted Gamma(R), are well-represented in the literature. In this paper, we consider domination numbers of zero-divisor graphs. For reduced rings, Vatandoost and Ramezani characterized the possible graphs for Gamma(R) when the sum of the domination numbers of Gamma(R) and the complement of Gamma(R) is n - 1, n, and n + 1, where n is the number of nonzero zero-divisors of R. We extend their results to nonreduced rings, determine which graphs are realizable as zero-divisor graphs, and provide the rings that yield these graphs.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 16 条
[1]   Bounds on weak and strong total domination number in graphs [J].
Akhbari, M. H. ;
Rad, N. Jafari .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2016, 4 (01) :111-118
[2]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[3]  
[Anonymous], 2011, Commutative Algebra, Noetherian and Non-Noetherian Perspectives
[4]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[5]  
Chartland G., 1977, Introductory Graph Theory
[6]  
Coykendall J., 2012, Prog. Commut. Algebra, V2, P241
[7]   Connected domination value in graphs [J].
Das, Angsuman .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) :113-123
[8]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[9]  
Hungerford T. W., 1974, ALGEBRA
[10]  
JAEGER F, 1972, CR ACAD SCI A MATH, V274, P728