Integrating Technical Analysis into Sentiment Analysis: An ASTE Framework for Electric Car Purchase Decision Support Based on LLMs and Semantic BNF

被引:0
作者
Carrasco-Aguilar, Alvaro [1 ,2 ]
Carmona-Martinez, M. Mercedes [3 ]
Parra-Merono, Maria C. [3 ]
Souto-Romero, Mar [4 ]
机构
[1] UCAM Univ Catolica Murcia, Fac Econ & Empresa, Murcia 30107, Spain
[2] Univ Complutense, Inst Univ Estadist & Ciencia Datos, Madrid 28040, Spain
[3] UCAM Univ Catiolica Murcia, Fac Econ & Empresa, Dept Ciencias Sociales Jurid & Empresa, Murcia 30107, Spain
[4] Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Econ Empresa, Madrid 28032, Spain
关键词
aspect sentiment triplet extraction; large language models; semantic Backus-Naur Form; fuzzy linguistic models; electric vehicles; expert reviews; MODEL;
D O I
10.3390/electronics14051020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing complexity of purchasing an electric car, influenced by technical specifications and expert reviews, requires advanced Natural Language Processing techniques to extract meaningful insights. This study enhances Aspect Sentiment Triplet Extraction (ASTE) by integrating Large Language Models (LLMs) to identify key aspects, opinions, and sentiments in expert reviews, including technical data traditionally classified as neutral, such as horsepower and battery range. A semantic extension of Backus-Naur Form (BNF) structures input queries for syntactic and semantic accuracy, while a 2-tuple fuzzy linguistic model refines sentiment representation, ensuring interpretability. The proposed model addresses limitations in existing ASTE techniques by incorporating formal grammar structures and linguistic modeling, eliminating the need for complex preprocessing. Applied to expert YouTube reviews of electric cars, the method leverages Google's Gemini model via Python and the Gemini API to rank the top-selling electric cars in the United States. The results confirm the model's effectiveness in aligning technical data with sentiment analysis, making it accessible to non-specialists in Natural Language Processing. This framework enhances decision support in electric car purchases by providing a structured, interpretable, and contextually rich sentiment analysis approach.
引用
收藏
页数:19
相关论文
共 33 条
[21]  
McKeeman W.M., 1988, Stud. Comput. Sci. Artif. Intell, V4, P201, DOI [10.1016/B978-0-444-70463-4.50015-3, DOI 10.1016/B978-0-444-70463-4.50015-3]
[22]  
Pinto P., 2023, Shanlax Int. J. Arts Sci. Humanit, V11, DOI [10.34293/sijash.v11i2.6505, DOI 10.34293/SIJASH.V11I2.6505]
[23]   A 2-tuple fuzzy linguistic model for recommending health care services grounded on aspect-based sentiment analysis [J].
Serrano-Guerrero, Jesus ;
Bani-Doumi, Mohammad ;
Romero, Francisco P. ;
Olivas, Jose A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
[24]  
Tonis R.B.M., 2024, Didact. Danub, V4, P46
[25]   MuSe-CarASTE: A comprehensive dataset for aspect sentiment triplet extraction in automotive review videos [J].
Usmani, Atiya ;
Alsamhi, Saeed Hamood ;
Khan, Muhammad Jaleed ;
Breslin, John ;
Curry, Edward .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
[26]  
Wang B., 2024, Adv. Neural Inf. Process. Syst, V36, P65030, DOI [10.48550/arXiv.2305.19234, DOI 10.48550/ARXIV.2305.19234]
[27]  
Wei JS, 2022, ADV NEUR IN
[28]   Complex sensitivity analysis in Multi-Criteria Decision Analysis: An application to the selection of an electric car [J].
Wieckowski, Jakub ;
Watrobski, Jaroslaw ;
Kizielewicz, Bartlomiej ;
Salabun, Wojciech .
JOURNAL OF CLEANER PRODUCTION, 2023, 390
[29]  
Wijaya A., 2022, Daengku: J. Humanit. Soc. Sci. Innov, V2, P596, DOI [10.35877/454RI.daengku1182, DOI 10.35877/454RI.DAENGKU1182]
[30]   Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction [J].
Xu, Haowen ;
Tang, Mingwei ;
Cai, Tao ;
Hu, Jie ;
Zhao, Mingfeng .
KNOWLEDGE-BASED SYSTEMS, 2024, 301