Integrating Technical Analysis into Sentiment Analysis: An ASTE Framework for Electric Car Purchase Decision Support Based on LLMs and Semantic BNF

被引:0
作者
Carrasco-Aguilar, Alvaro [1 ,2 ]
Carmona-Martinez, M. Mercedes [3 ]
Parra-Merono, Maria C. [3 ]
Souto-Romero, Mar [4 ]
机构
[1] UCAM Univ Catolica Murcia, Fac Econ & Empresa, Murcia 30107, Spain
[2] Univ Complutense, Inst Univ Estadist & Ciencia Datos, Madrid 28040, Spain
[3] UCAM Univ Catiolica Murcia, Fac Econ & Empresa, Dept Ciencias Sociales Jurid & Empresa, Murcia 30107, Spain
[4] Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Econ Empresa, Madrid 28032, Spain
关键词
aspect sentiment triplet extraction; large language models; semantic Backus-Naur Form; fuzzy linguistic models; electric vehicles; expert reviews; MODEL;
D O I
10.3390/electronics14051020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing complexity of purchasing an electric car, influenced by technical specifications and expert reviews, requires advanced Natural Language Processing techniques to extract meaningful insights. This study enhances Aspect Sentiment Triplet Extraction (ASTE) by integrating Large Language Models (LLMs) to identify key aspects, opinions, and sentiments in expert reviews, including technical data traditionally classified as neutral, such as horsepower and battery range. A semantic extension of Backus-Naur Form (BNF) structures input queries for syntactic and semantic accuracy, while a 2-tuple fuzzy linguistic model refines sentiment representation, ensuring interpretability. The proposed model addresses limitations in existing ASTE techniques by incorporating formal grammar structures and linguistic modeling, eliminating the need for complex preprocessing. Applied to expert YouTube reviews of electric cars, the method leverages Google's Gemini model via Python and the Gemini API to rank the top-selling electric cars in the United States. The results confirm the model's effectiveness in aligning technical data with sentiment analysis, making it accessible to non-specialists in Natural Language Processing. This framework enhances decision support in electric car purchases by providing a structured, interpretable, and contextually rich sentiment analysis approach.
引用
收藏
页数:19
相关论文
共 33 条
[1]   Automating Mobile App Review User Feedback with Aspect-Based Sentiment Analysis [J].
Ballas, Vasileios ;
Michalakis, Konstantinos ;
Alexandridis, Georgios ;
Caridakis, George .
HUMAN-CENTERED DESIGN, OPERATION AND EVALUATION OF MOBILE COMMUNICATIONS, PT II, MOBILE 2024, 2024, 14738 :179-193
[2]   Obamacare: A bibliometric perspective [J].
Carrasco-Aguilar, Alvaro ;
Javier Galan, Jose ;
Alberto Carrasco, Ramon .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[3]  
Carwow, Hyundai Ioniq 5 Review with 0-60mph Test! YouTube
[4]  
Carwow, YouTube
[5]  
Carwow Car Reviews, Car News & Buying Advice
[6]  
Carwow Tesla Model Y, 2022, YouTube
[7]  
CleanTechnica, Tesla Sweeps Podium for Top-Selling Electric Vehicles in USA
[8]   SciMAT: A new science mapping analysis software tool [J].
Cobo, M. J. ;
Lopez-Herrera, A. G. ;
Herrera-Viedma, E. ;
Herrera, F. .
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (08) :1609-1630
[9]  
Dahiya R., 2021, South Asian Journal of Marketing, V2, P51, DOI DOI 10.1108/SAJM-01-2021-0010
[10]  
Depox J., YouTube Transcript API