共 47 条
- [1] Valdeira P., Xavier J., Soares C., Chi Y., Communication-efficient vertical federated learning via compressed error feedback, Proc. 32nd Eur. Signal Process. Conf. (EUSIPCO), pp. 1037-1041, (2024)
- [2] McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A.Y., Communication-efficient learning of deep networks from decentralized data, Proc. Artif. Intell. Statist., PMLR, pp. 1273-1282, (2017)
- [3] Zhang X., Hong M., Dhople S., Yin W., Liu Y., FedPD: A federated learning framework with adaptivity to non-IID data, IEEE Trans. Signal Process., 69, pp. 6055-6070, (2021)
- [4] Sery T., Shlezinger N., Cohen K., Eldar Y.C., Over-the-air federated learning from heterogeneous data, IEEE Trans. Signal Process., 69, pp. 3796-3811, (2021)
- [5] Liu Y., Et al., Vertical federated learning: Concepts, advances, and challenges, IEEE Trans. Knowl. Data Eng., 36, 7, pp. 3615-3634, (2024)
- [6] Cheng Y., Liu Y., Chen T., Yang Q., Federated learning for privacy-preserving AI, Commun. ACM, 63, 12, pp. 33-36, (2020)
- [7] Ceballos I., Et al., SplitNN-driven vertical partitioning, (2020)
- [8] Dean J., Et al., Large scale distributed deep networks, Proc. Adv. Neural Inf. Process. Syst., 25, pp. 1223-1231, (2012)
- [9] Lian X., Zhang C., Zhang H., Hsieh C.-J., Zhang W., Liu J., Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent, Proc. Adv. Neural Inf. Process. Syst., 30, pp. 5336-5346, (2017)
- [10] Seide F., Fu H., Droppo J., Li G., Yu D., 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs, Proc. 15th Annu. Conf. Int. Speech Commun. Assoc., pp. 1058-1062, (2014)