Study of pH Gradients and Carbonation of Hydroxide Exchange Membrane Electrolyzers

被引:0
|
作者
Oliveira, Alexandra M. [1 ,2 ]
Setzler, Brian P. [1 ,2 ]
Yan, Yushan [1 ,2 ]
机构
[1] Univ Delaware, Ctr Clean Hydrogen, Newark, DE 19716 USA
[2] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
anion exchange membrane electrolyzers; electrochemical engineering; carbonation; electrolysis; DIOXIDE; CO2; CONDUCTIVITY; PERFORMANCE; EFFICIENCY; ALKALINE;
D O I
10.1149/1945-7111/adb51d
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hydroxide exchange membrane electrolyzers (HEMELs) can produce hydrogen at scale with high efficiencies. However, like their HEM fuel cell counterparts, the alkaline membrane and ionomer of HEMELs may be susceptible to CO2 contamination and cause performance losses. CO2 can form (bi)carbonates which increase ohmic resistances due to their reduced conductivity compared to hydroxide. More importantly, the potential gradient across the membrane drives a self-purging mechanism which can lower the anode pH, causing thermodynamic overpotentials. We used modeling and experiments to study these phenomena in HEMELs in order to understand CO2 -related losses through the conductivity and pH effects of different CO2 concentrations over a range of current densities. We found that pH gradients are the more significant barrier to cell performance and controlled them using three supporting electrolytes. We found that operating HEMELs at high current densities >1000 mA cm( )(-2)can recover >200 mV of overpotential due to self-purging of (bi)carbonates, but there is still some unrecoverable overpotential from the generated pH gradients. KOH electrolytes can be used to reduce this pH gradient, but K2CO3 and KHCO(3 )supporting electrolytes are susceptible to the same detrimental effects of carbonation and should not be used to minimize CO2 contamination.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
    Lettenmeier, P.
    Wang, R.
    Abouatallah, R.
    Saruhan, B.
    Freitag, O.
    Gazdzicki, P.
    Morawietz, T.
    Hiesgen, R.
    Gago, A. S.
    Friedrich, K. A.
    SCIENTIFIC REPORTS, 2017, 7
  • [32] Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers
    Cho, Junsic
    Kim, Dong Hyun
    Noh, Min Wook
    Kim, Haesol
    Oh, Hong-Gyun
    Lee, Pilyoung
    Yoon, Soobin
    Won, Wangyun
    Park, Young-June
    Lee, Ung
    Choi, Chang Hyuck
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23688 - 23696
  • [33] Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers
    Niaz, Atif Khan
    Akhtar, Adil
    Park, Jun-Young
    Lim, Hyung-Tae
    JOURNAL OF POWER SOURCES, 2021, 481
  • [34] A Solid Electrolyte RHE for Electrode Diagnosis of Proton Exchange Membrane Water Electrolyzers
    Huang, Meiquan
    Lao, Kejie
    Ma, Ling
    Tao, Jiawei
    Zhuang, Xinlong
    Hu, Tian
    Pan, Yaping
    Liu, Han
    Wen, Linrui
    Xu, Shuwen
    Liu, Xinru
    Wu, Yichun
    Li, Shuirong
    Tao, Hua Bing
    Zheng, Nanfeng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39408 - 39417
  • [35] Membrane resistance: The effect of salinity gradients over a cation exchange membrane
    Galama, A. H.
    Vermaas, D. A.
    Veerman, J.
    Saakes, M.
    Rijnaarts, H. H. M.
    Post, J. W.
    Nijmeijer, K.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 467 : 279 - 291
  • [36] Towards the application of 2D metal dichalcogenides as hydrogen evolution electrocatalysts in proton exchange membrane electrolyzers
    Ganin, Alexey Y.
    Symes, Mark D.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 34
  • [37] Hydroxide ions transportation in polynorbornene anion exchange membrane
    Wang, Chao
    Mo, Biming
    He, Zhenfeng
    Xie, Xiaofeng
    Zhao, Cindy Xinxin
    Zhang, Liqun
    Shao, Qian
    Guo, Xingkui
    Wujcik, Evan K.
    Guo, Zhanhu
    POLYMER, 2018, 138 : 363 - 368
  • [38] Measuring and modeling mass transport losses in proton exchange membrane water electrolyzers using electrochemical impedance spectroscopy
    Garcia-Navarro, J. C.
    Schulze, M.
    Friedrich, K. A.
    JOURNAL OF POWER SOURCES, 2019, 431 : 189 - 204
  • [39] Advanced development of anion-exchange membrane electrolyzers for hydrogen production: from anion-exchange membranes to membrane electrode assemblies
    Lei, Yun Chao
    Zhou, Jiayang
    Zhou, Wentao
    Wang, Yan
    Zhang, Mengyang
    Zhang, Anlei
    Wang, Longlu
    CHEMICAL COMMUNICATIONS, 2024, 60 (79) : 11000 - 11016
  • [40] Triphenylamine branched poly(aryl piperidinium) anion exchange membrane for alkaline water electrolyzers
    Zhang, Shuai
    Li, Jianyu
    Zhang, Dubing
    Hao, Wenlei
    Li, Jingde
    Yang, Yanqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 1390 - 1400