Global boundedness of the weak solutions to componentwise coercive parabolic systems

被引:0
作者
Palagachev, Dian K. [1 ]
Softova, Lubomira G. [2 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, I-70125 Bari, Italy
[2] Univ Salerno, Dept Math, I-84084 Salerno, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 32卷 / 03期
关键词
Quasilinear parabolic system; Discontinuous data; Weak solution; Coercivity; Regularity; Essential boundedness; ELLIPTIC-SYSTEMS; REGULARITY;
D O I
10.1007/s00030-025-01051-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove essential boundedness of the weak solutions to the Cauchy-Dirichlet problem for the quasilinear parabolic system ut-div(A(x,t,u,Du))=b(x,t,u,Du)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf{u}}_t- \mathrm {div\,}\big ({\textbf{A}}(x,t,{\textbf{u}},D{\textbf{u}})\big )= {\textbf{b}}(x,t,{\textbf{u}},D{\textbf{u}}) $$\end{document}which is modeled on the p-Laplacian vectorial operator. The nonlinear terms are given by Carath & eacute;odory functions and support controlled growth with respect to u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}$$\end{document} and Du,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D{\textbf{u}},$$\end{document} while their dependence on (x, t) is expressed in terms of suitable Lebesgue scales. Our result is proved by assuming additionally componentwise coercivity of the system and appropriate componentwise control of the lower-order terms.
引用
收藏
页数:21
相关论文
共 29 条
[1]   Boundedness of the solutions of a kind of nonlinear parabolic systems [J].
Alfano, Emilia Anna ;
Fattorusso, Luisa ;
Softova, Lubomira .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 360 :51-66
[2]  
[Anonymous], J MATH SCI NY
[3]  
Arkhipova A.A., 1995, Amer. Math. Soc. Transl. Ser., V2, P15, DOI [10.1090/trans2/164, DOI 10.1090/TRANS2/164]
[4]  
Arkhipova AA., 1995, J. Math. Sci. (N. Y.), V73, P609, DOI [10.1007/BF02364939, DOI 10.1007/BF02364939]
[5]  
Arkhipova AA., 1999, Siberian Adv. Math, V6, P1
[6]   Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices [J].
Arkhipova, Arina A. ;
Stara, Jana .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (02) :233-269
[7]   Boundedness and differentiability for nonlinear elliptic systems [J].
Björn, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) :4545-4565
[8]  
Bögelein V, 2008, ANN ACAD SCI FENN-M, V33, P387
[9]   Self-improving property of nonlinear higher order parabolic systems near the boundary [J].
Boegelein, Verena ;
Parviainen, Mikko .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (01) :21-54
[10]   Global Holder continuity of solutions to quasilinear equations with Morrey data [J].
Byun, Sun-Sig ;
Palagachev, Dian K. ;
Shin, Pilsoo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (08)