Quantization in fibering polarizations, Mabuchi rays and geometric Peter-Weyl theorem

被引:1
作者
Baier, Thomas [1 ]
Hilgert, Joachim [2 ]
Kaya, Oguzhan [3 ]
Mourao, Jose M. [1 ,4 ]
Nunes, Joao P. [1 ,4 ]
机构
[1] Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
[2] Paderborn Univ, Dept Math, Paderborn, Germany
[3] Galatasaray Univ, Dept Math, Istanbul, Turkiye
[4] Inst Super Tecn, Dept Math, Lisbon, Portugal
关键词
Geometric quantization; Peter-Weyl theorem; Borel-Weil construction; COTANGENT BUNDLE; LIE-GROUPS; TRANSFORM; FORMULA;
D O I
10.1016/j.geomphys.2024.105355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
sic bound In this paper we use techniques of geometric quantization to give a geometric interpre tation of the Peter Weyl theorem. We present a novel approach to half-form corrected geometric quantization in a specific type of non-K & auml;hler polarizations and study one impor tant class of examples, namely cotangent bundles of compact connected Lie groups K. Our main r refults ults state that this canonically defined polarization occurs in t ary of the space of K K invariant K & auml;hler polarizations equipped with Mabuchi's metric, and that its half-form corrected quantization is isomorphic to the K & auml;hler case. An impor tant rold is played by invariance of the limit polarization under a torus action. Unitary parallel transport the bundle of quantum states along a specific Mabuchi grodesig given by the coherent transform of Hall, relates the non commutative Fourier transform for K with the Borel Weil description of irreducible representations of K. @2024 Elsevier B.V. All rights reserved, including those for and data mining. Al training, and similar technologies.
引用
收藏
页数:32
相关论文
共 51 条
[1]   POISSON STRUCTURES ON THE COTANGENT BUNDLE OF A LIE GROUP OR A PRINCIPLE BUNDLE AND THEIR REDUCTIONS [J].
ALEKSEEVSKY, D ;
GRABOWSKI, J ;
MARMO, G ;
MICHOR, PW .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4909-4927
[2]  
AXELROD S, 1991, J DIFFER GEOM, V33, P787, DOI 10.4310/jdg/1214446565
[3]  
Baier T, 2024, Arxiv, DOI arXiv:2404.19697
[4]  
Baier T, 2011, J DIFFER GEOM, V89, P411
[5]   Quantization commutes with singular reduction: Cotangent bundles of compact Lie groups [J].
Boeijink, Jord ;
Landsman, Klaas ;
van Suijlekom, Walter .
REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (06)
[6]  
Bourbaki N., 1982, ELEMENTS MATHEMATIQU
[7]  
Bourbaki N., 2005, Elements of Mathematics (Berlin)
[8]  
DAZORD P, 1987, J DIFFER GEOM, V26, P223, DOI 10.4310/jdg/1214441368
[9]  
Dixmier J., 1977, C*-algebras
[10]  
Donaldson S. K., 1999, AM MATH SOC TRANS 2, V196, P13