Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition

被引:0
|
作者
Lin, Lilang [1 ]
Wu, Lehong [1 ]
Zhang, Jiahang [1 ]
Wang, Jiaying [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Self-supervised learning; skeleton-based action recognition; contrastive learning;
D O I
10.1007/978-3-031-73347-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative models, as a powerful technique for generation, also gradually become a critical tool for recognition tasks. However, in skeleton-based action recognition, the features obtained from existing pre-trained generative methods contain redundant information unrelated to recognition, which contradicts the nature of the skeleton's spatially sparse and temporally consistent properties, leading to undesirable performance. To address this challenge, we make efforts to bridge the gap in theory and methodology and propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning. More specifically, we first theoretically demonstrate the equivalence between generative models and maximum entropy coding, which demonstrates a potential route that makes the features of generative models more compact by introducing contrastive learning. To this end, we introduce the idempotency constraint to form a stronger consistency regularization in the feature space, to push the features only to maintain the critical information of motion semantics for the recognition task. Our extensive experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method. On the NTU 60 xsub dataset, we observe a performance improvement from 84.6% to 86.2%. Furthermore, in zero-shot adaptation scenarios, our model demonstrates significant efficacy by achieving promising results in cases that were previously unrecognizable. Our project is available at https://github.com/LanglandsLin/IGM.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 50 条
  • [31] Revisiting Skeleton-based Action Recognition
    Duan, Haodong
    Zhao, Yue
    Chen, Kai
    Lin, Dahua
    Dai, Bo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2959 - 2968
  • [32] Skeleton-based Action Recognition Based on Deep Learning and Grassmannian Pyramids
    Konstantinidis, Dimitrios
    Dimitropoulos, Kosmas
    Daras, Petros
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2045 - 2049
  • [33] JointContrast: Skeleton-Based Interaction Recognition with New Representation and Contrastive Learning
    Zhang, Ji
    Jia, Xiangze
    Wang, Zhen
    Luo, Yonglong
    Chen, Fulong
    Yang, Gaoming
    Zhao, Lihui
    ALGORITHMS, 2023, 16 (04)
  • [34] Global-Local Motion Transformer for Unsupervised Skeleton-Based Action Learning
    Kim, Boeun
    Chang, Hyung Jin
    Kim, Jungho
    Choi, Jin Young
    COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 209 - 225
  • [35] Global-Local Motion Transformer for Unsupervised Skeleton-Based Action Learning
    Kim, Boeun
    Chang, Hyung Jin
    Kim, Jungho
    Choi, Jin Young
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13664 LNCS : 209 - 225
  • [36] AL-SAR: Active Learning for Skeleton-Based Action Recognition
    Li, Jingyuan
    Le, Trung
    Shlizerman, Eli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16966 - 16974
  • [37] Adaptive Feature Selection With Reinforcement Learning for Skeleton-Based Action Recognition
    Xu, Zheyuan
    Wang, Yingfu
    Jiang, Jiaqin
    Yao, Jian
    Li, Liang
    IEEE ACCESS, 2020, 8 : 213038 - 213051
  • [38] AL-SAR: Active Learning for Skeleton-Based Action Recognition
    Li, Jingyuan
    Le, Trung
    Shlizerman, Eli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16966 - 16974
  • [39] Asymmetric information-regularized learning for skeleton-based action recognition
    Wu, Kunlun
    Gong, Xun
    APPLIED INTELLIGENCE, 2023, 53 (24) : 31077 - 31105
  • [40] Skeleton-Based Action Recognition with Spatial Reasoning and Temporal Stack Learning
    Si, Chenyang
    Jing, Ya
    Wang, Wei
    Wang, Liang
    Tan, Tieniu
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 106 - 121