Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition

被引:0
|
作者
Lin, Lilang [1 ]
Wu, Lehong [1 ]
Zhang, Jiahang [1 ]
Wang, Jiaying [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Self-supervised learning; skeleton-based action recognition; contrastive learning;
D O I
10.1007/978-3-031-73347-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative models, as a powerful technique for generation, also gradually become a critical tool for recognition tasks. However, in skeleton-based action recognition, the features obtained from existing pre-trained generative methods contain redundant information unrelated to recognition, which contradicts the nature of the skeleton's spatially sparse and temporally consistent properties, leading to undesirable performance. To address this challenge, we make efforts to bridge the gap in theory and methodology and propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning. More specifically, we first theoretically demonstrate the equivalence between generative models and maximum entropy coding, which demonstrates a potential route that makes the features of generative models more compact by introducing contrastive learning. To this end, we introduce the idempotency constraint to form a stronger consistency regularization in the feature space, to push the features only to maintain the critical information of motion semantics for the recognition task. Our extensive experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method. On the NTU 60 xsub dataset, we observe a performance improvement from 84.6% to 86.2%. Furthermore, in zero-shot adaptation scenarios, our model demonstrates significant efficacy by achieving promising results in cases that were previously unrecognizable. Our project is available at https://github.com/LanglandsLin/IGM.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 50 条
  • [21] Unsupervised Representation Learning with Long-Term Dynamics for Skeleton Based Action Recognition
    Zheng, Nenggan
    Wen, Jun
    Liu, Risheng
    Long, Liangqu
    Dai, Jianhua
    Gong, Zhefeng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2644 - 2651
  • [22] Contrast-Reconstruction Representation Learning for Self-Supervised Skeleton-Based Action Recognition
    Wang, Peng
    Wen, Jun
    Si, Chenyang
    Qian, Yuntao
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6224 - 6238
  • [23] InfoGCN plus plus : Learning Representation by Predicting the Future for Online Skeleton-Based Action Recognition
    Chi, Seunggeun
    Chi, Hyung-Gun
    Huang, Qixing
    Ramani, Karthik
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (01) : 514 - 528
  • [24] Deep Progressive Reinforcement Learning for Skeleton-based Action Recognition
    Tang, Yansong
    Tian, Yi
    Lu, Jiwen
    Li, Peiyang
    Zhou, Jie
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5323 - 5332
  • [25] A Cross View Learning Approach for Skeleton-Based Action Recognition
    Zheng, Hui
    Zhang, Xinming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3061 - 3072
  • [26] Deep Learning Techniques for Skeleton-Based Action Recognition: A Survey
    Pham, Dinh-Tan
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024, PT II, 2024, 14814 : 427 - 435
  • [27] Deep Learning on Lie Groups for Skeleton-based Action Recognition
    Huang, Zhiwu
    Wan, Chengde
    Probst, Thomas
    Van Gool, Luc
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1243 - 1252
  • [28] A Short Survey on Deep Learning for Skeleton-based Action Recognition
    Wang, Wei
    Zhang, Yu-Dong
    COMPANION PROCEEDINGS OF THE 14TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC'21 COMPANION), 2021,
  • [29] SkelResNet: Transfer Learning Approach for Skeleton-Based Action Recognition
    Kilic, Ugur
    Karadag, Ozge Oztimur
    Ozyer, Gulsah Tumuklu
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [30] JointContrast: Skeleton-Based Mutual Action Recognition with Contrastive Learning
    Jia, Xiangze
    Zhang, Ji
    Wang, Zhen
    Luo, Yonglong
    Chen, Fulong
    Xiao, Jing
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 478 - 489