Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition

被引:0
|
作者
Lin, Lilang [1 ]
Wu, Lehong [1 ]
Zhang, Jiahang [1 ]
Wang, Jiaying [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Self-supervised learning; skeleton-based action recognition; contrastive learning;
D O I
10.1007/978-3-031-73347-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative models, as a powerful technique for generation, also gradually become a critical tool for recognition tasks. However, in skeleton-based action recognition, the features obtained from existing pre-trained generative methods contain redundant information unrelated to recognition, which contradicts the nature of the skeleton's spatially sparse and temporally consistent properties, leading to undesirable performance. To address this challenge, we make efforts to bridge the gap in theory and methodology and propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning. More specifically, we first theoretically demonstrate the equivalence between generative models and maximum entropy coding, which demonstrates a potential route that makes the features of generative models more compact by introducing contrastive learning. To this end, we introduce the idempotency constraint to form a stronger consistency regularization in the feature space, to push the features only to maintain the critical information of motion semantics for the recognition task. Our extensive experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method. On the NTU 60 xsub dataset, we observe a performance improvement from 84.6% to 86.2%. Furthermore, in zero-shot adaptation scenarios, our model demonstrates significant efficacy by achieving promising results in cases that were previously unrecognizable. Our project is available at https://github.com/LanglandsLin/IGM.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 50 条
  • [1] EnsCLR: Unsupervised skeleton-based action recognition via ensemble contrastive learning of representation
    Wang, Kun
    Cao, Jiuxin
    Cao, Biwei
    Liu, Bo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 247
  • [2] Hierarchical Contrast for Unsupervised Skeleton-Based Action Representation Learning
    Dong, Jianfeng
    Sun, Shengkai
    Liu, Zhonglin
    Chen, Shujie
    Liu, Baolong
    Wang, Xun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 525 - 533
  • [3] Bootstrapped Representation Learning for Skeleton-Based Action Recognition
    Moliner, Olivier
    Huang, Sangxia
    Astrom, Kalle
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4153 - 4163
  • [4] Progressive semantic learning for unsupervised skeleton-based action recognition
    Qin, Hao
    Chen, Luyuan
    Kong, Ming
    Zhao, Zhuoran
    Zeng, Xianzhou
    Lu, Mengxu
    Zhu, Qiang
    MACHINE LEARNING, 2025, 114 (03)
  • [5] Representation modeling learning with multi-domain decoupling for unsupervised skeleton-based action recognition
    He, Zhiquan
    Lv, Jiantu
    Fang, Shizhang
    NEUROCOMPUTING, 2024, 582
  • [6] InfoGCN: Representation Learning for Human Skeleton-based Action Recognition
    Chi, Hyung-gun
    Ha, Myoung Hoon
    Chi, Seunggeun
    Lee, Sang Wan
    Huang, Qixing
    Ramani, Karthik
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20154 - 20164
  • [7] Representation Learning of Temporal Dynamics for Skeleton-Based Action Recognition
    Du, Yong
    Fu, Yun
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3010 - 3022
  • [8] Unsupervised skeleton-based action representation learning via relation consistency pursuit
    Wenjing Zhang
    Yonghong Hou
    Haoyuan Zhang
    Neural Computing and Applications, 2022, 34 : 20327 - 20339
  • [9] Unsupervised skeleton-based action representation learning via relation consistency pursuit
    Zhang, Wenjing
    Hou, Yonghong
    Zhang, Haoyuan
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 20327 - 20339
  • [10] Adaptive Spatiotemporal Representation Learning for Skeleton-Based Human Action Recognition
    Yu, Jiahui
    Gao, Hongwei
    Chen, Yongquan
    Zhou, Dalin
    Liu, Jinguo
    Ju, Zhaojie
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1654 - 1665