Establishing best practices in large language model research: an application to repeat prompting

被引:2
作者
Gallo, Robert J. [1 ,2 ]
Baiocchi, Michael [3 ]
Savage, Thomas R. [4 ]
Chen, Jonathan H. [4 ,5 ,6 ]
机构
[1] VA Palo Alto Hlth Care Syst, Ctr Innovat Implementat, 795 Willow Rd 152-MPD, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Epidemiol & Populat Hlth, Stanford, CA 94305 USA
[4] Stanford Univ, Div Pediat Hosp Med, Stanford, CA USA
[5] Stanford Univ, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[6] Stanford Univ, Clin Excellence Res Ctr, Stanford, CA 94305 USA
基金
奥地利科学基金会;
关键词
large language model; peer review; multilevel analysis; REGRESSION;
D O I
10.1093/jamia/ocae294
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objectives We aimed to demonstrate the importance of establishing best practices in large language model research, using repeat prompting as an illustrative example.Materials and Methods Using data from a prior study investigating potential model bias in peer review of medical abstracts, we compared methods that ignore correlation in model outputs from repeated prompting with a random effects method that accounts for this correlation.Results High correlation within groups was found when repeatedly prompting the model, with intraclass correlation coefficient of 0.69. Ignoring the inherent correlation in the data led to over 100-fold inflation of effective sample size. After appropriately accounting for this issue, the authors' results reverse from a small but highly significant finding to no evidence of model bias.Discussion The establishment of best practices for LLM research is urgently needed, as demonstrated in this case where accounting for repeat prompting in analyses was critical for accurate study conclusions.
引用
收藏
页码:386 / 390
页数:5
相关论文
共 20 条
[1]   STATISTICS NOTES .1. CORRELATION, REGRESSION, AND REPEATED DATA [J].
BLAND, JM ;
ALTMAN, DG .
BRITISH MEDICAL JOURNAL, 1994, 308 (6933) :896-896
[2]  
Gallifant Jack, 2024, medRxiv, DOI 10.1101/2024.07.24.24310930
[3]   Affiliation Bias in Peer Review of Abstracts [J].
Gallo, Robert J. ;
Savage, Thomas ;
Chen, Jonathan H. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2024, 331 (14)
[4]  
Gelman A., 2006, Data Analysis Using Regression and Multilevel/Hierarchical Models, DOI [10.1017/CBO9780511790942, DOI 10.1017/CBO9780511790942, 10.1017/cbo9780511790942]
[5]   Large Language Model Influence on Diagnostic Reasoning A Randomized Clinical Trial [J].
Goh, Ethan ;
Gallo, Robert ;
Hom, Jason ;
Strong, Eric ;
Weng, Yingjie ;
Kerman, Hannah ;
Cool, Josephine A. ;
Kanjee, Zahir ;
Parsons, Andrew S. ;
Ahuja, Neera ;
Horvitz, Eric ;
Yang, Daniel ;
Milstein, Arnold ;
Olson, Andrew P. J. ;
Rodman, Adam ;
Chen, Jonathan H. .
JAMA NETWORK OPEN, 2024, 7 (10)
[6]   Evaluation and mitigation of the limitations of large language models in clinical decision-making [J].
Hager, Paul ;
Jungmann, Friederike ;
Holland, Robbie ;
Bhagat, Kunal ;
Hubrecht, Inga ;
Knauer, Manuel ;
Vielhauer, Jakob ;
Makowski, Marcus ;
Braren, Rickmer ;
Kaissis, Georgios ;
Rueckert, Daniel .
NATURE MEDICINE, 2024, 30 (09) :2613-2622
[7]   How to design efficient cluster randomised trials [J].
Hemming, K. ;
Eldridge, S. ;
Forbes, G. ;
Weijer, C. ;
Taljaard, M. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 358
[8]  
Katz U, 2024, NEJM AI, V1, DOI [10.1056/aidbp2300192, 10.1056/AIdbp2300192, DOI 10.1056/AIDBP2300192, 10.1056/aidbp2300192]
[9]  
Krippendorff K., 2018, Content Analysis: An Introduction to Its Methodology
[10]   RANDOM GROUP EFFECTS AND THE PRECISION OF REGRESSION ESTIMATES [J].
MOULTON, BR .
JOURNAL OF ECONOMETRICS, 1986, 32 (03) :385-397