MACHINE-LEARNING-BASED THERMAL CONDUCTIVITY PREDICTION IN TWO-DIMENSIONAL TIS2/MOS2 VAN DER WAALS HETEROSTRUCTURES

被引:0
作者
Nair, Akhil K. [1 ]
Da Silva, Carlos M. [1 ]
Amon, Cristina H. [1 ,2 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Chem Engn & Appl Chem, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
来源
PROCEEDINGS OF ASME 2024 7TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, MNHMT 2024 | 2024年
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
2D materials; van der Waals heterostructures; machine-learning interatomic potentials; thermal conductivity;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Two-dimensional (2D) materials and heterostructures display unique thermal characteristics compared to their bulk counterparts. However, the accurate estimation of the thermal conductivity of 2D materials, particularly of 2D van der Waals heterostructures, presents significant challenges for both computational and experimental methods. In this study, we propose a computationally efficient approach to investigate the thermal conductivity of 2D TiS2/MoS2 van der Waals heterostructures. Our approach utilizes machine-learning interatomic potentials (MLIPs) to predict the thermal conductivity of the heterostructure. This approach effectively incorporates intralayer interactions by utilizing moment tensor potentials (MTP) trained with computationally inexpensive density functional theory (DFT)-based datasets. These datasets are generated from ab-initio molecular dynamics (AIMD) trajectories over less than 1 ps, while the interlayer van der Waals interactions are calibrated using the D3-dispersion correction method. By explicitly incorporating the missing dispersion contribution into the MTP, this method provides greater accuracy in predicting interlayer interactions than the widely applied Lennard-Jones (LJ) potential. Finally, molecular dynamics (MD) simulations are conducted to determine the thermal conductivity of the TiS2/MoS2 heterostructures using the derived potential parameters. This study enhances our understanding of thermal transport in van der Waals (vdW) heterostructures, leveraging MLIPs to explore new nanostructured materials with superior thermal conductivity.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials [J].
Arabha, Saeed ;
Aghbolagh, Zahra Shokri ;
Ghorbani, Khashayar ;
Hatam-Lee, S. Milad ;
Rajabpour, Ali .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
[2]   Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition [J].
Bae, Jung Jun ;
Jeong, Hye Yun ;
Han, Gang Hee ;
Kim, Jaesu ;
Kim, Hyun ;
Kim, Min Su ;
Moon, Byoung Hee ;
Lim, Seong Chu ;
Lee, Young Hee .
NANOSCALE, 2017, 9 (07) :2541-2547
[3]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[4]   1ST-PRINCIPLES LINEAR COMBINATION OF ATOMIC ORBITALS METHOD FOR THE COHESIVE AND STRUCTURAL-PROPERTIES OF SOLIDS - APPLICATION TO DIAMOND [J].
CHELIKOWSKY, JR ;
LOUIE, SG .
PHYSICAL REVIEW B, 1984, 29 (06) :3470-3481
[5]   In-plane and cross-plane thermal conductivities of molybdenum disulfide [J].
Ding, Zhiwei ;
Jiang, Jin-Wu ;
Pei, Qing-Xiang ;
Zhang, Yong-Wei .
NANOTECHNOLOGY, 2015, 26 (06)
[6]   Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations [J].
Fan, Zheyong ;
Pereira, Luiz Felipe C. ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng ;
Donadio, Davide ;
Harju, Ari .
PHYSICAL REVIEW B, 2015, 92 (09)
[7]   Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures [J].
Gao, Yuan ;
Liu, Qingchang ;
Xu, Baoxing .
ACS NANO, 2016, 10 (05) :5431-5439
[8]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[9]  
Goerigk L, 2017, NON-COVALENT INTERACTIONS IN QUANTUM CHEMISTRY AND PHYSICS: THEORY AND APPLICATIONS, P195, DOI 10.1016/B978-0-12-809835-6.00007-4
[10]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)