ISTD-CrackNet: Hybrid CNN-transformer models focusing on fine-grained segmentation of multi-scale pavement cracks

被引:0
作者
Zhang, Zaiyan [1 ]
Zhuang, Yangyang [1 ]
Song, Weidong [2 ]
Wu, Jiachen [1 ]
Ye, Xin [1 ]
Zhang, Hongyue [1 ]
Xu, Yanli [1 ]
Shi, Guoli [1 ]
机构
[1] Heilongjiang Univ Sci & Technol, Coll Min Engn, Harbin 150000, Peoples R China
[2] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Pavement surface crack; Transformer; Fine-grained segmentation; NETWORKS;
D O I
10.1016/j.measurement.2025.117215
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Pavement crack detection is essential for the automated evaluation of pavement damage. In this context, we introduce ISTD-CrackNet, a semantic segmentation model based on a hierarchical Transformer architecture. This model features a multi-angle strip convolution module, a dynamic upsampling module, and a multi-scale transposed convolution segmentation head. The multi-angle strip convolution module is designed to establish long-range dependencies in four directions, ensuring the continuity of crack segmentation. An attention-guided dynamic upsampling module is employed to enhance the recognition accuracy of small cracks. Additionally, the multi-scale transposed convolutional segmentation head integrates shallow positional information with deeper categorical details to improve the fine-grained performance of crack edge segmentation. Compared to mainstream segmentation models, ISTD-CrackNet effectively addresses issues of segmentation discontinuities, low multi-scale accuracy, and boundary blurring. Experiments conducted on 5 publicly available datasets demonstrate its excellent generalization ability and robustness, highlighting its significant potential for intelligent pavement evaluation applications.
引用
收藏
页数:18
相关论文
共 82 条
[1]   Computer vision framework for crack detection of civil infrastructure-A review [J].
Ai, Dihao ;
Jiang, Guiyuan J. ;
Lam, Siew-Kei ;
He, Peilan ;
Li, Chengwu .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
[2]   Automatic Pixel-Level Pavement Crack Detection Using Information of Multi-Scale Neighborhoods [J].
Ai, Dihao ;
Jiang, Guiyuan ;
Kei, Lam Siew ;
Li, Chengwu .
IEEE ACCESS, 2018, 6 :24452-24463
[3]   Asymmetric dual-decoder-U-Net for pavement crack semantic segmentation [J].
Al-Huda, Zaid ;
Peng, Bo ;
Algburi, Riyadh Nazar Ali ;
Al-antari, Mugahed A. ;
AL-Jarazi, Rabea ;
Al-maqtari, Omar ;
Zhai, Donghai .
AUTOMATION IN CONSTRUCTION, 2023, 156
[4]   Evaluating pavement cracks with bidimensional empirical mode decomposition [J].
Ayenu-Prah, Albert ;
Attoh-Okine, Nii .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]   Poly Kernel Inception Network for Remote Sensing Detection [J].
Cai, Xinhao ;
Lai, Qiuxia ;
Wang, Yuwei ;
Wang, Wenguan ;
Sun, Zeren ;
Yao, Yazhou .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, :27706-27716
[7]   A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks [J].
Cao Vu Dung ;
Sekiya, Hidehiko ;
Hirano, Suichi ;
Okatani, Takayuki ;
Miki, Chitoshi .
AUTOMATION IN CONSTRUCTION, 2019, 102 :217-229
[8]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[9]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[10]   Online monitoring of crack dynamic development using attention-based deep networks [J].
Chen, Wang ;
He, Zhili ;
Zhang, Jian .
AUTOMATION IN CONSTRUCTION, 2023, 154