NONCUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS IN THE WHOLE SPACE

被引:0
作者
Carrapatoso, Kleber [1 ]
Gervais, Pierre [2 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
[2] Univ Torino, Dept Econ Social Sci Appl Math & Stat, Turin, Italy
来源
PURE AND APPLIED ANALYSIS | 2024年 / 6卷 / 01期
关键词
Boltzmann equation; noncutoff kernels; soft-potentials; large-time behavior; OPTIMAL TIME DECAY; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; ANGULAR CUTOFF; EXPONENTIAL DECAY; CAUCHY-PROBLEM; STABILITY;
D O I
10.2140/paa.2024.6.253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence, uniqueness and convergence of global solutions to the Boltzmann equation with noncutoff soft potentials in the whole space when the initial data is a small perturbation of a Maxwellian with polynomial decay in velocity. Our method is based in the decomposition of the desired solution into two parts: one with polynomial decay in velocity satisfying the Boltzmann equation with only a dissipative part of the linearized operator, the other with Gaussian decay in velocity verifying the Boltzmann equation with a coupling term.
引用
收藏
页码:253 / 303
页数:54
相关论文
共 42 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[3]   The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :599-661
[4]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[5]   THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J ;
Yang, T. .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :113-134
[6]   Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff [J].
Alexandre, Radjesvarane ;
Herau, Frederic ;
Li, Wei-Xi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 :1-71
[7]   LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2013, 6 (04) :1011-1041
[8]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123
[9]   Non-cutoff Boltzmann equation with polynomial decay perturbations [J].
Alonso, Ricardo ;
Morimoto, Yoshinori ;
Sun, Weiran ;
Yang, Tong .
REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (01) :189-292
[10]   From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight [J].
Briant, Marc ;
Merino-Aceituno, Sara ;
Mouhot, Clement .
ANALYSIS AND APPLICATIONS, 2019, 17 (01) :85-116