A Multifeature Fusion Network for Tree Species Classification Based on Ground-Based LiDAR Data

被引:0
作者
Liu, Yaoting [1 ,2 ]
Chen, Yiming [3 ]
Liu, Zhengjun [3 ]
Chen, Jianchang [4 ]
Liu, Yuxuan [3 ]
机构
[1] Chinese Acad Surveying & Mapping, Beijing 100836, Peoples R China
[2] Lanzhou Jiaotong Univ, Lanzhou 730070, Peoples R China
[3] Chinese Acad Surveying & Mapping, Beijing 100836, Peoples R China
[4] Wuhan Univ, Wuhan 430079, Peoples R China
关键词
Vegetation; Point cloud compression; Random forests; Feature extraction; Deep learning; Accuracy; Three-dimensional displays; Laser radar; Transformers; Morphology; light detection and ranging (LiDAR); multifeature fusion tree classifier network (MFFTC-Net); tree species classification; POINT; FOREST;
D O I
10.1109/JSTARS.2025.3527808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light detection and ranging (LiDAR) holds considerable promise for tree species classification. Existing networks that utilize point clouds of individual trees have shown promising results. However, challenges, such as incomplete point cloud data, uneven point density across different components of the tree, and complex tree morphologies, can hinder classification accuracy. To overcome these limitations, we introduced the multifeature fusion tree classifier network (MFFTC-Net). This network leverages a novel boundary-driven point sampling method that preserves more canopy points and mitigates the effects of uneven point density. We also utilize the umbrella-repSurf module, which captures local geometric features and enhances the model's responsiveness to tree structural nuances. The backbone of MFFTC-Net integrates these innovations through a multifeature fusion approach, utilizing set abstraction for local information capture and transformer-based feature interaction for robust multiscale feature integration. Our results demonstrate that MFFTC-Net significantly outperforms other state-of-the-art methods in LiDAR-based tree species classification, achieving the highest overall accuracy and kappa coefficients on both a self-built dataset of four species and a public dataset of seven species.
引用
收藏
页码:4648 / 4663
页数:16
相关论文
共 50 条
  • [31] Classification of tree species based on structural features derived from high density LiDAR data
    Li, Jili
    Hu, Baoxin
    Noland, Thomas L.
    AGRICULTURAL AND FOREST METEOROLOGY, 2013, 171 : 104 - 114
  • [32] Reinforcement Learning Based Markov Edge Decoupled Fusion Network for Fusion Classification of Hyperspectral and LiDAR
    Wang, Haoyu
    Cheng, Yuhu
    Liu, Xiaomin
    Wang, Xuesong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7174 - 7187
  • [33] HYPERSPECTRAL TREE SPECIES CLASSIFICATION WITH AN AID OF LIDAR DATA
    Matsuki, Toniohiro
    Yokoya, Naoto
    Iwasaki, Akira
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [34] Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data
    Zhang, Zhongya
    Kazakova, Alexandra
    Moskal, Ludmila Monika
    Styers, Diane M.
    FORESTS, 2016, 7 (06):
  • [35] Joint Classification of Hyperspectral and LiDAR Data Based on Mamba
    Liao, Diling
    Wang, Qingsong
    Lai, Tao
    Huang, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH-RESOLUTION SATELLITE IMAGE
    Li, Hui
    Hu, Baoxin
    Li, Qian
    Jing, Linhai
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2679 - 2682
  • [37] A Contrastive Learning Enhanced Adaptive Multimodal Fusion Network for Hyperspectral and LiDAR Data Classification
    Xu, Kai
    Wang, Bangjun
    Zhu, Zhou
    Jia, Zhaohong
    Fan, Chengcheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [38] Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network
    Song, Tiecheng
    Zeng, Zheng
    Gao, Chenqiang
    Chen, Haonan
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [39] MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data
    Fan, Yingying
    Qian, Yurong
    Qin, Yugang
    Wan, Yaling
    Gong, Weijun
    Chu, Zhuang
    Liu, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10041 - 10054
  • [40] Improving urban tree species classification by deep-learning based fusion of digital aerial images and LiDAR
    Ferreira, Matheus Pinheiro
    Santos, Daniel Rodrigues dos
    Ferrari, Felipe
    Coelho, Luiz Carlos Teixeira
    Martins, Gabriela Barbosa
    Feitosa, Raul Queiroz
    URBAN FORESTRY & URBAN GREENING, 2024, 94