A Multifeature Fusion Network for Tree Species Classification Based on Ground-Based LiDAR Data

被引:1
作者
Liu, Yaoting [1 ,2 ]
Chen, Yiming [3 ]
Liu, Zhengjun [3 ]
Chen, Jianchang [4 ]
Liu, Yuxuan [3 ]
机构
[1] Chinese Acad Surveying & Mapping, Beijing 100836, Peoples R China
[2] Lanzhou Jiaotong Univ, Lanzhou 730070, Peoples R China
[3] Chinese Acad Surveying & Mapping, Beijing 100836, Peoples R China
[4] Wuhan Univ, Wuhan 430079, Peoples R China
关键词
Vegetation; Point cloud compression; Random forests; Feature extraction; Deep learning; Accuracy; Three-dimensional displays; Laser radar; Transformers; Morphology; light detection and ranging (LiDAR); multifeature fusion tree classifier network (MFFTC-Net); tree species classification; POINT; FOREST;
D O I
10.1109/JSTARS.2025.3527808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light detection and ranging (LiDAR) holds considerable promise for tree species classification. Existing networks that utilize point clouds of individual trees have shown promising results. However, challenges, such as incomplete point cloud data, uneven point density across different components of the tree, and complex tree morphologies, can hinder classification accuracy. To overcome these limitations, we introduced the multifeature fusion tree classifier network (MFFTC-Net). This network leverages a novel boundary-driven point sampling method that preserves more canopy points and mitigates the effects of uneven point density. We also utilize the umbrella-repSurf module, which captures local geometric features and enhances the model's responsiveness to tree structural nuances. The backbone of MFFTC-Net integrates these innovations through a multifeature fusion approach, utilizing set abstraction for local information capture and transformer-based feature interaction for robust multiscale feature integration. Our results demonstrate that MFFTC-Net significantly outperforms other state-of-the-art methods in LiDAR-based tree species classification, achieving the highest overall accuracy and kappa coefficients on both a self-built dataset of four species and a public dataset of seven species.
引用
收藏
页码:4648 / 4663
页数:16
相关论文
共 56 条
[51]   Intermediate Domain Prototype Contrastive Adaptation for Spartina alterniflora Segmentation Using Multitemporal Remote Sensing Images [J].
Zhao, Boyu ;
Zhang, Mengmeng ;
Li, Wei ;
Song, Xiukai ;
Gao, Yunhao ;
Zhang, Yuxiang ;
Wang, Junjie .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[52]   Point Transformer [J].
Zhao, Hengshuang ;
Jiang, Li ;
Jia, Jiaya ;
Torr, Philip ;
Koltun, Vladlen .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :16239-16248
[53]   Life-cycle impact assessment of hardwood forest resources in the eastern United States [J].
Zhao, Jinghan ;
Smith, William ;
Wang, Jingxin ;
Zhang, Xufeng ;
Bergman, Richard .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 909
[54]   Artificial fi cial intelligence for geoscience: Progress, challenges, and perspectives [J].
Zhao, Tianjie ;
Wang, Sheng ;
Ouyang, Chaojun ;
Chen, Min ;
Liu, Chenying ;
Zhang, Jin ;
Yu, Long ;
Wang, Fei ;
Xie, Yong ;
Li, Jun ;
Wang, Fang ;
Grunwald, Sabine ;
Wong, Bryan M. ;
Zhang, Fan ;
Qian, Zhen ;
Xu, Yongjun ;
Yu, Chengqing ;
Han, Wei ;
Sun, Tao ;
Shao, Zezhi ;
Qian, Tangwen ;
Chen, Zhao ;
Zeng, Jiangyuan ;
Zhang, Huai ;
Letu, Husi ;
Zhang, Bing ;
Wang, Li ;
Luo, Lei ;
Shi, Chong ;
Su, Hongjun ;
Zhang, Hongsheng ;
Yin, Shuai ;
Huang, Ni ;
Zhao, Wei ;
Li, Nan ;
Zheng, Chaolei ;
Zhou, Yang ;
Huang, Changping ;
Feng, Defeng ;
Xu, Qingsong ;
Wu, Yan ;
Hong, Danfeng ;
Wang, Zhenyu ;
Lin, Yinyi ;
Zhang, Tangtang ;
Kumar, Prashant ;
Plaza, Antonio ;
Chanussot, Jocelyn ;
Zhang, Jiabao ;
Shi, Jiancheng .
INNOVATION, 2024, 5 (05)
[55]   A Survey of Point Cloud Completion [J].
Zhuang, Zhiyun ;
Zhi, Zhiyang ;
Han, Ting ;
Chen, Yiping ;
Chen, Jun ;
Wang, Cheng ;
Cheng, Ming ;
Zhang, Xinchang ;
Qin, Nannan ;
Ma, Lingfei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :5691-5711
[56]   Tree Classification in Complex Forest Point Clouds Based on Deep Learning [J].
Zou, Xinhuai ;
Cheng, Ming ;
Wang, Cheng ;
Xia, Yan ;
Li, Jonathan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) :2360-2364