Calcium chloride hexahydrate based composite phase change/ thermochemical material for wide-temperature range passive battery thermal management

被引:0
作者
Miao, Wenjing [1 ,2 ]
Quan, Ruixing [1 ,2 ]
Ju, Jiaxin [1 ,2 ]
Hu, Meng [1 ]
Cao, Hui [3 ,4 ]
Xu, Qian [5 ]
Xiong, Yaxuan [6 ]
Zhao, Yanqi [1 ,7 ,8 ]
Ding, Yulong [9 ,10 ]
Ling, Xiang [7 ,11 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Inst Intelligent Flexible Mechatron, Zhenjiang 212013, Peoples R China
[3] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, England
[4] Univ Huddersfield, Ctr Efficiency & Performance Engn, Huddersfield HD1 3DH, England
[5] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Shunde Grad Sch, Beijing 100083, Peoples R China
[6] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Heating Gas Supply Ventilating & A, Beijing 100044, Peoples R China
[7] Nanjing Tech Univ, Jiangsu Key Lab Proc Enhancement & New Energy Equi, Nanjing 211816, Peoples R China
[8] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
[9] Univ Birmingham, Birmingham Ctr Energy Storage, Birmingham B15 2TT, England
[10] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, England
[11] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
Calcium chloride hexahydrate; Composite phase change material; Flame retardancy; Battery pre-heating; Battery thermal management; Battery thermal runaway; LITHIUM ION BATTERY; MECHANICAL-PROPERTIES; CERAMIC FIBERS; RUNAWAY; ELECTROSPUN;
D O I
10.1016/j.cej.2025.160800
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Battery, as the core of the electric vehicle, needs to be thermally managed and protected to avoid decreased performance and thermal runaway. In this study, calcium chloride hexahydrate based composite phase change materials are developed for passive battery thermal management and thermal protection. The composite phase change materials achieve wide-temperature range thermal management based on their high energy density, including 84.89 similar to 195.5 J/g for pre-heating between 0 and 10 degrees C, 99.93 similar to 179.2 J/g for operation cooling between 25 and 50 degrees C, and 326 similar to 699.5 J/g for thermal runaway elimination between 50 and 120 degrees C. Using ceramic fibre as a support material, strontium chloride hexahydrate as a nucleating agent, and hydroxylated cellulose nanofiber to improve the form stability of calcium chloride hexahydrate, the phase transition temperature is increased to 37.1 degrees C, which meets thermal management requirements. The unique dendrite structure provided by crystalline phase change material and the cross-linked fibre network enhances the tensile strength of the composite to 2.97 MPa. Compared with typical battery wrapping material, Polyvinyl chloride, the battery module based on the developed composite phase change material can reduce the peak temperature and temperature difference during operation cooling by up to 34.9 % and 50.7 %, respectively. In addition, the composite phase change material also provides excellent flame retardancy, with a limiting oxygen index value of 100 % unburned and UL-94 grade reaching V0. In the case of battery thermal runaway, the composite phase change material can absorb the 37,730 J of energy released by the first battery and eliminate the thermal runaway. The results show that the prepared composite phase change material has high performance thermal management and thermal protection, with the advantage of low cost.
引用
收藏
页数:16
相关论文
共 33 条
[1]  
Aarts J., 2023, Appl. Energy, V341
[2]   Enhanced thermal reliability and performance of calcium chloride hexahydrate phase change material using cellulose nanofibril and graphene nanoplatelet [J].
Akamo, Damilola O. ;
Li, Kai ;
Turnaoglu, Tugba ;
Kumar, Navin ;
Li, Yuzhan ;
Pekol, Collin ;
Bibhanshu, Nitish ;
Goswami, Monojoy ;
Hirschey, Jason ;
Laclair, Tim J. ;
Keffer, David J. ;
Rios, Orlando ;
Gluesenkamp, Kyle R. .
JOURNAL OF ENERGY STORAGE, 2024, 75
[3]   A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles [J].
Akbarzadeh, Mohsen ;
Jaguemont, Joris ;
Kalogiannis, Theodoros ;
Karimi, Danial ;
He, Jiacheng ;
Jin, Lu ;
Xie, Peng ;
Mierlo, Joeri Van ;
Berecibar, Maitane .
ENERGY CONVERSION AND MANAGEMENT, 2021, 231
[4]   Latent heat absorption of alkali metal hydrates enables delayed ignition and improved flame retardancy of epoxy resin [J].
Feng, Jiao ;
Lin, Peng ;
Xiang, Simeng ;
Lin, Xiang ;
Liu, Feng ;
Yang, Hongyu ;
Feng, Xiaming ;
Wan, Chaojun .
THERMOCHIMICA ACTA, 2024, 740
[5]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[6]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273
[7]   Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement [J].
He, Dan ;
Wang, Jialin ;
Peng, Yanjun ;
Li, Baofeng ;
Feng, Chang ;
Shen, Lin ;
Ma, Shouxiao .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
[8]   Research on the characterization of crystalline growth of calcium chloride hexahydrate heat storage material [J].
Hua, Weisan ;
Jiang, Miaomiao ;
Zhang, Xuelai ;
Sun, Qiang ;
Zhang, Wenzhuang .
JOURNAL OF ENERGY STORAGE, 2024, 104
[9]   Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review [J].
Jiang, Kun ;
Liao, Gaoliang ;
E Jiaqiang ;
Zhang, Feng ;
Chen, Jingwei ;
Leng, Erwei .
JOURNAL OF ENERGY STORAGE, 2020, 32
[10]   Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules [J].
Li, Lei ;
Xu, Chengshan ;
Chang, Runze ;
Yang, Chong ;
Jia, Chao ;
Wang, Li ;
Song, Jianan ;
Li, Ziwei ;
Zhang, Fangshu ;
Fang, Ben ;
Wei, Xiaoding ;
Wang, Huaibin ;
Wu, Qiong ;
Chen, Zhaofeng ;
He, Xiangming ;
Feng, Xuning ;
Wu, Hui ;
Ouyang, Minggao .
ENERGY STORAGE MATERIALS, 2021, 40 :329-336