LARGE DEVIATION THEOREMS FOR RANDOM DYNAMIC SYSTEMS OVER CLOSED SETS

被引:0
作者
Deng, Xinying [1 ]
Yang, Xue [2 ]
Xing, Jiamin [1 ,3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
基金
中国国家自然科学基金;
关键词
Large deviation theorem; ergodically sensitive; topologically ergodic; symbolic dynamical system; topologically strongly ergodic; CENTRAL-LIMIT-THEOREM; MEAN EQUICONTINUITY; ERGODIC THEOREM; CHAOS;
D O I
10.3934/dcdss.2024203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Omega x Y, F x 13(Y ), P, Theta(t)) be a 'skew-product' dynamic system and P be a support probability measure on Omega x Y. We introduce large deviation theorems of the 'skew-product' dynamic system over a nonempty closed subset T of R+ U {0}, which can be inhomogeneous, and popularize the definition of 'topologically ergodic, sensitive' to the case of 'skew-product' between the complete probability measure space S2 and nontrivial compact measurable metric space Y. We also present sufficient conditions on the ergodic sensitivity and topological ergodicity .
引用
收藏
页码:3353 / 3368
页数:16
相关论文
共 26 条
[1]   Chaotic properties of mappings on a probability space [J].
Abraham, C ;
Biau, G ;
Cadre, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :420-431
[2]  
Anzai H., 1951, Osaka Mathematical Journal, V3, P83
[3]   ON THE FUNCTIONAL CENTRAL LIMIT-THEOREM AND THE LAW OF THE ITERATED LOGARITHM FOR MARKOV-PROCESSES [J].
BHATTACHARYA, RN .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (02) :185-201
[4]   Qualitative Analysis of the Dynamic for the Nonlinear Korteweg-de Vries Equation with a Boundary Memory [J].
Chentouf, Boumediene .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
[5]  
Ellis R, 1985, GRUNDLEHREN MATH WIS, V271
[6]  
GORDIN MI, 1978, DOKL AKAD NAUK SSSR+, V239, P766
[7]   The large deviations theorem and ergodicity [J].
Gu, Rongbao .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1387-1392
[8]   A strong large deviation theorem [J].
Joutard C. .
Mathematical Methods of Statistics, 2013, 22 (2) :155-164
[9]   Large deviations and rates of convergence in the Birkhoff ergodic theorem: From Holder continuity to continuity [J].
Kachurovskii, A. G. ;
Podvigin, I. V. .
DOKLADY MATHEMATICS, 2016, 93 (01) :6-8
[10]   Nonconventional large deviations theorems [J].
Kifer, Yuri ;
Varadhan, S. R. S. .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 158 (1-2) :197-224