Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study

被引:0
作者
Bediaga-Baneres, Harbil [1 ]
Moreno-Benitez, Isabel [2 ]
Arrasate, Sonia [2 ]
Perez-alvarez, Leyre [1 ,3 ]
Halder, Amit K. [4 ,5 ]
Cordeiro, M. Natalia D. S. [4 ]
Gonzalez-Diaz, Humberto [2 ,6 ,7 ]
Vilas-Vilela, Jose Luis [1 ,3 ]
机构
[1] Univ Basque Country UPV EHU, Dept Phys Chem, Leioa 48940, Spain
[2] Univ Basque Country UPV EHU, Dept Organ & Inorgan Chem, Leioa 48940, Spain
[3] BCMaterials, Basque Ctr Mat Applicat & Nanostruct, UPV EHU Sci Pk, Leioa 48940, Spain
[4] Univ Porto, Fac Sci, Dept Chem & Biochem, LAQV REQUIMTE, P-4169007 Porto, Portugal
[5] Dr BC Roy Coll Pharm & Allied Hlth Sci, Durgapur 713206, India
[6] CSIC UPV EHU, Basque Ctr Biophys, Leioa 48940, Spain
[7] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
关键词
machine learning; artificial intelligence; database; hydrogel; modeling; bioprinting; HARARY INDEX; DESCRIPTORS; BIOINKS; DESIGN; PRINTABILITY; VIABILITY; CHITOSAN; ASSAYS; TOOL;
D O I
10.3390/polym17010121
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Determining the values of various properties for new bio-inks for 3D printing is a very important task in the design of new materials. For this purpose, a large number of experimental works have been consulted, and a database with more than 1200 bioprinting tests has been created. These tests cover different combinations of conditions in terms of print pressure, temperature, and needle values, for example. These data are difficult to deal with in terms of determining combinations of conditions to optimize the tests and analyze new options. The best model demonstrated a specificity (Sp) of 88.4% and a sensitivity (Sn) of 86.2% in the training series while achieving an Sp of 85.9% and an Sn of 80.3% in the external validation series. This model utilizes operators based on perturbation theory to analyze the complexity of the data. For comparative purposes, neural networks have been used, and very similar results have been obtained. The developed tool could easily be applied to predict the properties of bioprinting assays in silico. These findings could significantly improve the efficiency and accuracy of predictive models in bioprinting without resorting to trial-and-error tests, thereby saving time and funds. Ultimately, this tool may help pave the way for advances in personalized medicine and tissue engineering.
引用
收藏
页数:17
相关论文
共 70 条
  • [21] M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines
    Elbadawi, Moe
    Muniz Castro, Brais
    Gavins, Francesca K. H.
    Ong, Jun Jie
    Gaisford, Simon
    Perez, Gilberto
    Basit, Abdul W.
    Cabalar, Pedro
    Goyanes, Alvaro
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 590
  • [22] Machine learning in nutrient management: A review
    Ennaji, Oumnia
    Verguetz, Leonardus
    El Allali, Achraf
    [J]. ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2023, 9 : 1 - 11
  • [23] Ewald J., 2021, Life Sci. Wkly, P6348, DOI [10.1101/2021.09.05.459012, DOI 10.1101/2021.09.05.459012]
  • [24] Forecasting of demand using ARIMA model
    Fattah, Jamal
    Ezzine, Latifa
    Aman, Zineb
    El Moussami, Haj
    Lachhab, Abdeslam
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT, 2018, 10
  • [25] Biodesigned bioinks for 3D printing via divalent crosslinking of self- assembled peptide-polysaccharide hybrids
    Firipis, Kate
    Footner, Elizabeth
    Boyd-Moss, Mitchell
    Dekiwadia, Chaitali
    Nisbet, David
    Kapsa, Robert MI.
    Pirogova, Elena
    Williams, Richard J.
    Quigley, Anita
    [J]. MATERIALS TODAY ADVANCES, 2022, 14
  • [26] Emerging Applications of 3D Printing in Biomanufacturing
    Gao, Hao
    Zhang, Wenming
    Yu, Ziyi
    Xin, Fengxue
    Jiang, Min
    [J]. TRENDS IN BIOTECHNOLOGY, 2021, 39 (11) : 1114 - 1116
  • [27] Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach
    Gao, Teng
    Gillispie, Gregory J.
    Copus, Joshua S.
    Kumar, Anil P. R.
    Seol, Young-Joon
    Atala, Anthony
    Yoo, James J.
    Lee, Sang Jin
    [J]. BIOFABRICATION, 2018, 10 (03)
  • [28] Prediction of Gasoline Blend Ignition Characteristics Using Machine Learning Models
    Gonzalez, Sandra Correa
    Kroyan, Yuri
    Sarjovaara, Teemu
    Kiiski, Ulla
    Karvo, Anna
    Toldy, Arpad, I
    Larmi, Martti
    Santasalo-Aarnio, Annukka
    [J]. ENERGY & FUELS, 2021, 35 (11) : 9332 - 9340
  • [29] Applications of 2D Descriptors in Drug Design: A DRAGON Tale
    Helguera, Aliuska Morales
    Combes, Robert D.
    Gonzalez, Maykel Perez
    Cordeiro, M. Natalia D. S.
    [J]. CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2008, 8 (18) : 1628 - 1655
  • [30] An analysis of the autocorrelation descriptor for molecules
    Hollas, B
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2003, 33 (02) : 91 - 101