Machine Learning-Driven Maintenance Order Generation in Assembly Lines

被引:0
|
作者
Princz, Gabor [1 ]
Shaloo, Masoud [1 ]
Reisacher, Fabian [1 ]
Erol, Selim [1 ]
机构
[1] Univ Appl Sci Wiener Neustadt, Johannes Gutenberg Str 3, A-2700 Wiener Neustadt, Austria
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 19期
关键词
Condition-Based Maintenance; Predictive Maintenance; Engineering Applications of Artificial Intelligence; TIME-SERIES;
D O I
10.1016/j.ifacol.2024.09.119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The automatic generation of maintenance orders facilitates the prompt detection and root cause analysis of deviations or failures in the assembly process. The aim of this project is to use supervised learning models to recognise deviations in the throughput times of a fully automated assembly process carried out by robots. The model identifies errors, categorises their causes and transmits the information back to the Enterprise Resource Planning (ERP) system. The data collected comes from a development and test assembly station with an industrial robot. The data set from the assembly station was expanded using agent-based simulation in order to train the four models Support Vector Machine, K-Neares Neighbour, Naive Bayes and Decision Tree. The SVM model proved to be the most suitable model for automatic fault detection with an accuracy of 99.51 %. The model was integrated into the assembly station and an algorithm was developed to automatically generate maintenance messages to transmit the failure code to the ERP system.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Machine Learning-Driven Preventive Maintenance for Fibreboard Production in Industry 4.0
    Suwatcharachaitiwong, Sirirat
    Sirivongpaisal, Nikorn
    Surasak, Thattapon
    Jiteurtragool, Nattagit
    Treeranurat, Laksiri
    Teeraparbseree, Aree
    Khumprom, Phattara
    Pungchompoo, Sirirat
    Buakum, Dollaya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (03) : 942 - 950
  • [2] A survey of deep learning-driven architecture for predictive maintenance
    Li, Zhe
    He, Qian
    Li, Jingyue
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [3] Machine Learning-Driven Predictive Maintenance Framework for Anomaly Detection and Prognostics in Wind Farm Operations
    Nuvvula, Ramakrishna S. S.
    Kumar, Polamarasetty P.
    Theetchenya, S.
    Ahammed, Syed Riyaz
    Hushein, R.
    Babu, J. M.
    Ali, Ahmed
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 284 - 289
  • [4] Machine Learning-Driven Approach for a COVID-19 Warning System
    Hussain, Mushtaq
    Islam, Akhtarul
    Turi, Jamshid Ali
    Nabi, Said
    Hamdi, Monia
    Hamam, Habib
    Ibrahim, Muhammad
    Cifci, Mehmet Akif
    Sehar, Tayyaba
    ELECTRONICS, 2022, 11 (23)
  • [5] Machine learning-driven optimization of enterprise resource planning (ERP) systems: a comprehensive review
    Jawad, Zainab Nadhim
    Balazs, Villanyi
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2024, 13 (01)
  • [6] Predictive maintenance with machine learning and
    Ersoz, Olcay Ozge
    Ifraz, Metin
    Tebrizcik, Semra
    Inal, Ali Firat
    Eskicioglu, Omer Can
    Aktepe, Adnan
    Turker, Ahmet Kursad
    Barisci, Necaattin
    Cetinyokus, Tahsin
    Ersoz, Suleyman
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2025,
  • [7] Predictive Maintenance Applications for Machine Learning
    Cline, Brad
    Niculescu, Radu Stefan
    Huffman, Duane
    Deckel, Bob
    2017 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2017,
  • [8] A predictive maintenance model for health assessment of an assembly robot based on machine learning in the context of smart plant
    Chakroun, Ayoub
    Hani, Yasmina
    Elmhamedi, Abderrahmane
    Masmoudi, Faouzi
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (08) : 3995 - 4013
  • [9] Data-Driven Predictive Maintenance in Evolving Environments: A Comparison Between Machine Learning and Deep Learning for Novelty Detection
    Del Buono, Francesco
    Calabrese, Francesca
    Baraldi, Andrea
    Paganelli, Matteo
    Regattieri, Alberto
    SUSTAINABLE DESIGN AND MANUFACTURING, KES-SDM 2021, 2022, 262 : 109 - 119
  • [10] Reliability Monitoring and Predictive Maintenance of Power Electronics with Physics and Data Driven Approach Based on Machine Learning
    Cui, Yujia
    Hu, Jiangang
    Tallam, Ranga
    Miklosovic, Rob
    Zargari, Navid
    2023 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2023, : 2563 - 2568