Co-existing topological and Volkov-Pankratov plasmonic edge states in magnetized graphene

被引:1
作者
Mukherjee, Samyobrata [1 ]
Savchuk, Viktoriia [1 ]
Allen, Jeffery w [2 ]
Allen, Monica s. [2 ]
Shvets, Gennady [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] US Air Force, Res Lab, Munit Directorate, 101 W Eglin Blvd, Eglin AFB, FL 32542 USA
来源
OPTICAL MATERIALS EXPRESS | 2025年 / 15卷 / 03期
关键词
SURFACE-PLASMONS;
D O I
10.1364/OME.551411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene placed in a perpendicular magnetic field supports optical modes known as magnetoplasmons which are transversally confined to the graphene layer. Unlike ordinary graphene plasmons, these magnetoplasmonic surface waves are characterized by a band gap corresponding to the cyclotron frequency. In addition, these magnetoplasmon bands are topological, characterized by a non-zero Chern number. This leads to the existence of topologically protected edge states at domain edges where the Chern number changes. Since the Chern number is dependent on the direction of the magnetic field, edge states exist at domain edges across which the magnetic field flips direction. Physically, the magnetic field can only flip direction at gradual domain edges with finite width creating topological heterojunctions. These topological heterojunctions support extra edge states known as Volkov-Pankratov edge states which can enter the band gap and support propagation in both directions. The number of Volkov-Pankratov states at a heterojunction varies as a function of the width of the gradual domain edge. (c) 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:501 / 512
页数:12
相关论文
共 49 条
[1]  
Alonso-González P, 2017, NAT NANOTECHNOL, V12, P31, DOI [10.1038/nnano.2016.185, 10.1038/NNANO.2016.185]
[2]   Volkov-Pankratov states in topological superconductors [J].
Alspaugh, David J. ;
Sheehy, Daniel E. ;
Goerbig, Mark O. ;
Simon, Pascal .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[3]   Observation of Weyl and Dirac fermions at smooth topological Volkov-Pankratov heterojunctions [J].
Bermejo-Ortiz, J. ;
Krizman, G. ;
Jakiela, R. ;
Khosravizadeh, Z. ;
Hajlaoui, M. ;
Bauer, G. ;
Springholz, G. ;
de Vaulchier, L. -A. ;
Guldner, Y. .
PHYSICAL REVIEW B, 2023, 107 (07)
[4]  
Ciobanu A., 2022, arXiv
[5]  
Crassee I, 2011, NAT PHYS, V7, P48, DOI [10.1038/nphys1816, 10.1038/NPHYS1816]
[6]   Infrared nano-imaging of Dirac magnetoexcitons in graphene [J].
Dapolito, Michael ;
Tsuneto, Makoto ;
Zheng, Wenjun ;
Wehmeier, Lukas ;
Xu, Suheng ;
Chen, Xinzhong ;
Sun, Jiacheng ;
Du, Zengyi ;
Shao, Yinming ;
Jing, Ran ;
Zhang, Shuai ;
Bercher, Adrien ;
Dong, Yinan ;
Halbertal, Dorri ;
Ravindran, Vibhu ;
Zhou, Zijian ;
Petrovic, Mila ;
Gozar, Adrian ;
Carr, G. L. ;
Li, Qiang ;
Kuzmenko, Alexey B. ;
Fogler, Michael M. ;
Basov, D. N. ;
Du, Xu ;
Liu, Mengkun .
NATURE NANOTECHNOLOGY, 2023, 18 (12) :1409-1415
[7]   Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating [J].
Fan, Zhiyuan ;
Dutta-Gupta, Shourya ;
Gladstone, Ran ;
Trendafilov, Simeon ;
Bosch, Melissa ;
Jung, Minwoo ;
Iyer, Ganjigunte R. Swathi ;
Giles, Alexander J. ;
Shcherbakov, Maxim ;
Feigelson, Boris ;
Caldwell, Joshua D. ;
Allen, Monica ;
Allen, Jeffery ;
Shvets, Gennady .
NANOPHOTONICS, 2019, 8 (08) :1417-1431
[8]   Edge and Surface Plasmons in Graphene Nanoribbons [J].
Fei, Z. ;
Goldflam, M. D. ;
Wu, J-S. ;
Dai, S. ;
Wagner, M. ;
McLeod, A. S. ;
Liu, M. K. ;
Post, K. W. ;
Zhu, S. ;
Janssen, G. C. A. M. ;
Fogler, M. M. ;
Basov, D. N. .
NANO LETTERS, 2015, 15 (12) :8271-8276
[9]   Confined magneto-optical waves in graphene [J].
Ferreira, Aires ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW B, 2012, 85 (20)
[10]   Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids [J].
Ferreira, Aires ;
Viana-Gomes, J. ;
Bludov, Yu. V. ;
Pereira, V. ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW B, 2011, 84 (23)