Multi-type and Multi-level Feature Fusion Network for RGBD Indoor Semantic Segmentation

被引:1
作者
Xia, Yuwen [1 ,2 ,3 ]
Gu, Chaochen [1 ,2 ,3 ]
Wu, Kaijie [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] Shanghai Engn Res Ctr Intelligent Control & Manag, Shanghai 200240, Peoples R China
来源
2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC | 2022年
关键词
RGBD; semantic segmentation; NYUDv2;
D O I
10.1109/CCDC55256.2022.10033547
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RGBD images, which refer to the three-channel color images augmented with depth channel, have been greatly exploited to improve the performance of scene semantic segmentation. RGBD semantic segmentation task is of great significance to help the development of robot navigation and grasping. However, most existing methods addressing RGBD semantic segmentation lack effective feature fusion modules. To address the aforementioned problem, we propose a novel network with two novel modules for feature fusion, namely Channel-Attention based Complementary Feature Fusion Module (CAC-FFM) and Cross-Layer Feature Fusion Module (CL-FFM). Specifically, CAC-FFM, which is essentially based on the channel-attention mechanism, effectively utilizes the complementary information of RGB and depth to generate fusion features, and CL-FFM captures patch-wise features from low-level feature maps to assist the training of high-level features so as to further optimize the segmentation results. Experimental results on the publicly available NYUDv2 dataset validate the effectiveness and superiority of our proposed method.
引用
收藏
页码:6142 / 6148
页数:7
相关论文
共 25 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]   Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation [J].
Cheng, Yanhua ;
Cai, Rui ;
Li, Zhiwei ;
Zhao, Xin ;
Huang, Kaiqi .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1475-1483
[4]  
Couprie C., 2013, P INT C LEARN REPR
[5]  
Dosovitskiy A, 2020, ARXIV
[6]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[7]   Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges [J].
Feng, Di ;
Haase-Schutz, Christian ;
Rosenbaum, Lars ;
Hertlein, Heinz ;
Glaser, Claudius ;
Timm, Fabian ;
Wiesbeck, Werner ;
Dietmayer, Klaus .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) :1341-1360
[8]   Learning Rich Features from RGB-D Images for Object Detection and Segmentation [J].
Gupta, Saurabh ;
Girshick, Ross ;
Arbelaez, Pablo ;
Malik, Jitendra .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :345-360
[9]   STD2P: RGBD Semantic Segmentation using Spatio-Temporal Data-Driven Pooling [J].
He, Yang ;
Chiu, Wei-Chen ;
Keuper, Margret ;
Fritz, Mario .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :7158-7167
[10]   Short-term forecasting of origin-destination matrix in transit system via a deep learning approach [J].
He, Yuxin ;
Zhao, Yang ;
Tsui, Kwok-Leung .
TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023, 19 (02)