PREDICTION OF SOIL MOISTURE FROM NEAR-GLOBAL CYGNSS GNSS-REFLECTOMETRY USING A RANDOM FOREST MACHINE LEARNING MODEL

被引:1
作者
Wilson, M. D. [1 ,4 ]
Datta, R. [1 ,5 ]
Savarimuthu, S. [1 ]
Moller, D. [2 ,6 ]
Ruf, C. [3 ]
机构
[1] Univ Canterbury, Geospatial Res Inst Toi Hangarau, Christchurch, New Zealand
[2] Univ Auckland, Dept Elect Comp & Software Engn, Auckland, New Zealand
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Canterbury, Sch Earth & Environm, Christchurch, New Zealand
[5] World Resources Inst, New Delhi, India
[6] ReSTORe Lab Ltd, Wanaka, New Zealand
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
GNSS-R; CYGNSS; soil moisture; random forest; GPM; MODIS; SMAP;
D O I
10.1109/IGARSS53475.2024.10642723
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We developed a random forest model to predict soil moisture at the field scale (similar to 1 km), combining 6.5 years of CYGNSS Global Navigation Satellite System Reflectometry (GNSS-R) data with observations from 1049 gauges which are part of the International Soil Moisture Network. Several relevant predictor variables were developed, including geophysical parameters related to soil properties, topography, land cover and climatology, and dynamic variables including precipitation from the Global Precipitation Mission and evapotranspiration derived from MODIS temperature. The model achieved good accuracy for predicted soil moisture (R-2 = 0.68; RMSE = 0.064 mm/mm), which was further improved through post-processing using a linear regression model of the residuals for bias correction (R-2 = 0.82; RMSE = 0.048 mm/mm). Our work demonstrates the potential for field-scale prediction of soil moisture from GNSS-R data, which may be further improved through enhanced co-variates, and is applicable to recent and near-future GNSS-R missions such as Rongowai and HydroGNSS.
引用
收藏
页码:4465 / 4471
页数:7
相关论文
共 55 条
[41]   CYGNSS-derived soil moisture: Status, challenges and future [J].
Rohil, Mukesh Kumar ;
Mathur, Shray .
ECOLOGICAL INFORMATICS, 2022, 69
[42]  
Ross CW, 2018, SCI DATA, V5, DOI [10.3334/ornldaac/1566, 10.1038/sdata.2018.91]
[43]  
Ruf Christopher, 2017, 2017 IEEE INT GEOSCI
[44]   THE CYGNSS NANOSATELLITE CONSTELLATION HURRICANE MISSION [J].
Ruf, Christopher S. ;
Gleason, Scott ;
Jelenak, Zorana ;
Katzberg, Stephen ;
Ridley, Aaron ;
Rose, Randall ;
Scherrer, John ;
Zavorotny, Valery .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :214-216
[45]   Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS [J].
Senyurek, Volkan ;
Lei, Fangni ;
Boyd, Dylan ;
Kurum, Mehmet ;
Gurbuz, Ali Cafer ;
Moorhead, Robert .
REMOTE SENSING, 2020, 12 (07)
[46]  
Skofronick-Jackson G, 2017, B AM METEOROL SOC, V98, P1679, DOI [10.1175/bams-d-15-00306.1, 10.1175/BAMS-D-15-00306.1]
[47]   MACHINE LEARNING BASED SOIL MOISTURE RETRIEVAL ALGORITHM AND VALIDATION AT SELECTED AGRICULTURAL SITES OVER INDIA USING CYGNSS DATA [J].
Tyagi, Shivani ;
Pandey, Dharmendra Kumar ;
Putrevu, Deepak ;
Srivastava, Prashant K. ;
Misra, Arundhati .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :6335-6338
[48]  
Tyagi Shivani, 2019 IEEE 16 INDIA, P1
[49]   An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission [J].
Unwin, Martin J. ;
Pierdicca, Nazzareno ;
Cardellach, Estel ;
Rautiainen, Kimmo ;
Foti, Giuseppe ;
Blunt, Paul ;
Guerriero, Leila ;
Santi, Emanuele ;
Tossaint, Michel .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :6987-6999
[50]   New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product [J].
Wan, Zhengming .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :36-45