Mixture-of-Linear-Experts for Long-term Time Series Forecasting

被引:0
|
作者
Ni, Ronghao [1 ]
Lin, Zinan [2 ]
Wang, Shuaiqi [1 ]
Fanti, Giulia [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Microsoft Res, Mountain View, CA USA
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238 | 2024年 / 238卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-term time series forecasting (LTSF) aims to predict future values of a time series given the past values. The current stateof-the-art (SOTA) on this problem is attained in some cases by linear-centric models, which primarily feature a linear mapping layer. However, due to their inherent simplicity, they are not able to adapt their prediction rules to periodic changes in time series patterns. To address this challenge, we propose a Mixture-of-Experts-style augmentation for linear-centric models and propose Mixture-of-Linear-Experts (MoLE). Instead of training a single model, MoLE trains multiple linear-centric models (i.e., experts) and a router model that weighs and mixes their outputs. While the entire framework is trained end-to-end, each expert learns to specialize in a specific temporal pattern, and the router model learns to compose the experts adaptively. Experiments show that MoLE reduces forecasting error of linear-centric models, including DLinear, RLinear, and RMLP, in over 78% of the datasets and settings we evaluated. By using MoLE existing linear-centric models can achieve SOTA LTSF results in 68% of the experiments that PatchTST reports and we compare to, whereas existing single-head linear-centric models achieve SOTA results in only 25% of cases.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] LONG-TERM FORECASTING AND THE EXPERTS
    FILDES, R
    INTERNATIONAL JOURNAL OF FORECASTING, 1986, 2 (01) : 3 - 4
  • [2] LTScoder: Long-Term Time Series Forecasting Based on a Linear Autoencoder Architecture
    Kim, Geunyong
    Yoo, Hark
    Kim, Chorwon
    Kim, Ryangsoo
    Kim, Sungchang
    IEEE ACCESS, 2024, 12 : 98623 - 98633
  • [3] xLSTMTime: Long-Term Time Series Forecasting with xLSTM
    Alharthi, Musleh
    Mahmood, Ausif
    AI, 2024, 5 (03) : 1482 - 1495
  • [4] A granular time series approach to long-term forecasting and trend forecasting
    Dong, Ruijun
    Pedrycz, Witold
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (13) : 3253 - 3270
  • [5] LTBoost: Boosted Hybrids of Ensemble Linear and Gradient Algorithms for the Long-term Time Series Forecasting
    Truchan, Hubert
    Kalfar, Christian
    Ahmadi, Zahra
    PROCEEDINGS OF THE 33RD ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2024, 2024, : 2271 - 2281
  • [6] Data Segmentation based Long-term Time Series Forecasting
    Bao, Yizhen
    Lu, Shiyu
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 51 - 58
  • [7] A Long-term Time Series Forecasting method with Multiple Decomposition
    Wang, Yang
    Xhen, Xu
    Wang, Shuyang
    Jing, Yongjun
    35TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2023, 2023,
  • [8] Deterministic vector long-term forecasting for fuzzy time series
    Li, Sheng-Tun
    Kuo, Shu-Ching
    Cheng, Yi-Chung
    Chen, Chih-Chuan
    FUZZY SETS AND SYSTEMS, 2010, 161 (13) : 1852 - 1870
  • [9] Gaussian Process for Long-Term Time-Series Forecasting
    Yan, Weizhong
    Qiu, Hai
    Xue, Ya
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1031 - 1038
  • [10] Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system
    Yang, Xiyang
    Yu, Fusheng
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 81 : 1 - 27