Parameter identification of Volterra nonlinear system based on Levenberg-Marquardt recursive algorithm

被引:0
|
作者
Chu, Jie [1 ]
Li, Junhong [1 ]
Zong, Tiancheng [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
关键词
parameter estimation; nonlinear systems; Volterra model; Levenberg-Marquardt recursive algorithm; stochastic gradient algorithm; NEWTON;
D O I
10.1109/CCDC55256.2022.10033751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Volterra model can approximate many nonlinear systems, and it is a typical nonlinear system. This paper studies the parameter estimation problem of the Volterra model. Combining the Levenberg-Marquardt optimization method and the recursive identification method, we propose a Levenberg-Marquardt recursive algorithm and apply it to the identification of the Volterra system. In order to verify the feasibility of the above algorithm, the second-order Volterra system is simulated using the Levenberg-Marquardt recursive algorithm and the forgetting factor stochastic gradient algorithm respectively, and then we compare the simulation results of the Volterra system under the two algorithms. The simulation results show that the above two algorithms can identify the parameters of the Volterra system. Compared with the forgetting factor stochastic gradient algorithm, the Levenberg- Marquardt recursive algorithm has faster convergence speed and higher convergence accuracy. This proves the effectiveness of the Levenberg-Marquardt recursive algorithm.
引用
收藏
页码:5948 / 5952
页数:5
相关论文
共 50 条
  • [21] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)
  • [22] Identification of Wheel-Rail Adhesion Status Using an Improved Recursive Levenberg-Marquardt Algorithm
    Chen, Qinghua
    Ge, Xin
    Wang, Kaiyun
    ADVANCES IN DYNAMICS OF VEHICLES ON ROADS AND TRACKS III, VOL 1, IAVSD 2023, 2025, : 343 - 352
  • [23] A corrected Levenberg-Marquardt algorithm with a nonmonotone line search for the system of nonlinear equations
    He, Yedan
    Ma, Changfeng
    Fan, Bin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 260 : 159 - 169
  • [24] Adding Nonlinear System Dynamics to Levenberg-Marquardt Algorithm for Neural Network Control
    Larrea, Mikel
    Irigoyen, Eloy
    Gomez, Vicente
    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 352 - 357
  • [25] Levenberg-Marquardt Algorithm Based Nonlinear Optimization of Camera Calibration for Relative Measurement
    Tian Shao-xiong
    Lu Shan
    Liu Zong-ming
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4868 - 4872
  • [26] Hierarchical Levenberg Marquardt algorithm for identification of fractional nonlinear system
    Hammar, Karima
    Djamah, Tounsia
    Bettayeb, Maamar
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 660 - 664
  • [27] Modified Levenberg-Marquardt's algorithm for nonlinear optimal control
    Courtial, E.
    Toure, Y.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [28] Parametric identification of nonlinear dynamic systems using combined Levenberg-Marquardt and Genetic Algorithm
    Kumar, R. Kishore
    Sandesh, S.
    Shankar, K.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2007, 7 (04) : 715 - 725
  • [29] Modified Levenberg-Marquardt's algorithm for nonlinear optimal control
    Courtial, E
    Toure, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 395 - 396
  • [30] The Parallel Modification to the Levenberg-Marquardt Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Grzanek, Konrad
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 15 - 24