Parameter identification of Volterra nonlinear system based on Levenberg-Marquardt recursive algorithm

被引:0
|
作者
Chu, Jie [1 ]
Li, Junhong [1 ]
Zong, Tiancheng [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
关键词
parameter estimation; nonlinear systems; Volterra model; Levenberg-Marquardt recursive algorithm; stochastic gradient algorithm; NEWTON;
D O I
10.1109/CCDC55256.2022.10033751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Volterra model can approximate many nonlinear systems, and it is a typical nonlinear system. This paper studies the parameter estimation problem of the Volterra model. Combining the Levenberg-Marquardt optimization method and the recursive identification method, we propose a Levenberg-Marquardt recursive algorithm and apply it to the identification of the Volterra system. In order to verify the feasibility of the above algorithm, the second-order Volterra system is simulated using the Levenberg-Marquardt recursive algorithm and the forgetting factor stochastic gradient algorithm respectively, and then we compare the simulation results of the Volterra system under the two algorithms. The simulation results show that the above two algorithms can identify the parameters of the Volterra system. Compared with the forgetting factor stochastic gradient algorithm, the Levenberg- Marquardt recursive algorithm has faster convergence speed and higher convergence accuracy. This proves the effectiveness of the Levenberg-Marquardt recursive algorithm.
引用
收藏
页码:5948 / 5952
页数:5
相关论文
共 50 条
  • [1] THE TWO-MASS SYSTEM PARAMETER IDENTIFICATION WITH LEVENBERG-MARQUARDT ALGORITHM
    Bartik, Ondrej
    PROCEEDINGS II OF THE 26TH CONFERENCE STUDENT EEICT 2020, 2020, : 151 - 155
  • [2] Fractional Order Parameter Identification Of PMSM Based on Improved Levenberg-Marquardt Algorithm
    Li, Yanan
    Wang, Xingcheng
    Lu, Senkui
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4219 - 4223
  • [3] Parallel and separable recursive Levenberg-Marquardt training algorithm
    Asirvadam, VS
    McLoone, SF
    Irwin, GW
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 129 - 138
  • [4] Automatic Image Parameter Optimization Based on Levenberg-Marquardt Algorithm
    Zheng Jinxin
    Du Junping
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 719 - 723
  • [5] A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations
    Fan, JY
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (05) : 625 - 636
  • [6] A Levenberg-Marquardt algorithm with correction for singular system of nonlinear equations
    Fan, Jinyan
    Zeng, Jinlong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9438 - 9446
  • [7] Modeling and Parameter Identification of FCCU Regenerator with Modified Levenberg-Marquardt Algorithm
    Zheng, Yi
    Li, Shaoyuan
    Zhu, Wenjun
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1854 - 1859
  • [8] A MODIFIED LEVENBERG-MARQUARDT ALGORITHM FOR SINGULAR SYSTEM OF NONLINEAR EQUATIONS
    Jin-yan Fan (Department of Mathematics
    JournalofComputationalMathematics, 2003, (05) : 625 - 636
  • [9] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [10] A Parallel Levenberg-Marquardt Algorithm for Recursive Neural Network in a Robot Control System
    Wang, Wei
    Pu, Yunming
    Li, Wang
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2018, 12 (02) : 32 - 47