TLS-SLAM: Gaussian Splatting SLAM Tailored for Large-Scale Scenes

被引:1
作者
Cheng, Sicong [1 ]
He, Songyang [1 ]
Duan, Fuqing [1 ]
An, Ning [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] China Coal Res Inst, Res Inst Mine Artificial Intelligence, Beijing 100013, Peoples R China
[3] State Key Lab Intelligent Coal Min & Strata Contro, Beijing 100013, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 03期
关键词
Semantics; Three-dimensional displays; Simultaneous localization and mapping; Rendering (computer graphics); Optimization; Convergence; Adaptation models; Solid modeling; Accuracy; Neural radiance field; Simultaneous localization and mapping (SLAM); AI-based methods; sensor fusion;
D O I
10.1109/LRA.2025.3536876
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
3D Gaussian splatting (3DGS) has shown promise for fast and high-quality mapping in simultaneous localization and mapping (SLAM), but faces convergence challenges in large-scale scenes across three key aspects. Firstly, the excessive Gaussian points in 3DGS models for large-scale scenes make the search space of the model optimization process more complex, leading to local optima. Secondly, trajectory drift caused by long-term localization in large-scale scenes displaces Gaussian point cloud positions. Thirdly, dynamic objects commonly found in large-scale scenes produce numerous noise Gaussian points that disrupt gradient backpropagation. We propose TLS-SLAM to address these convergence challenges. To ensure large-scale scene map optimization attains the global optimal, we use scene memory features to encode and adaptively build sub-maps, dividing the optimization space into subspaces, which reduces the optimization complexity. To reduce trajectory drift, we use a pose update method guided by semantic information, ensuring accurate Gaussian point cloud creation. To mitigate the impact of dynamic objects, we utilize 3D Gaussian distributions to accurately extract, encode, and model dynamic objects from the scene, thereby avoiding the generation of noise points. Experiments on four datasets show that our method achieves strong performance in tracking, mapping, and rendering accuracy.
引用
收藏
页码:2814 / 2821
页数:8
相关论文
共 31 条
  • [1] From SLAM to Situational Awareness: Challenges and Survey
    Bavle, Hriday
    Sanchez-Lopez, Jose Luis
    Cimarelli, Claudio
    Tourani, Ali
    Voos, Holger
    [J]. SENSORS, 2023, 23 (10)
  • [2] Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
  • [3] Volume rendering
    Drebin, Robert A.
    Carpenter, Loren
    Hanrahan, Pat
    [J]. Computer Graphics (ACM), 1988, 22 (04): : 65 - 74
  • [4] Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
    Ebadi, Kamak
    Bernreiter, Lukas
    Biggie, Harel
    Catt, Gavin
    Chang, Yun
    Chatterjee, Arghya
    Denniston, Christopher E.
    Deschenes, Simon-Pierre
    Harlow, Kyle
    Khattak, Shehryar
    Nogueira, Lucas
    Palieri, Matteo
    Petracek, Pavel
    Petrlik, Matej
    Reinke, Andrzej
    Kratky, Vit
    Zhao, Shibo
    Agha-mohammadi, Ali-akbar
    Alexis, Kostas
    Heckman, Christoffer
    Khosoussi, Kasra
    Kottege, Navinda
    Morrell, Benjamin
    Hutter, Marco
    Pauling, Fred
    Pomerleau, Francois
    Saska, Martin
    Scherer, Sebastian
    Siegwart, Roland
    Williams, Jason L.
    Carlone, Luca
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 936 - 959
  • [5] Deep Learning for Visual SLAM: The State-of-the-Art and Future Trends
    Favorskaya, Margarita N.
    [J]. ELECTRONICS, 2023, 12 (09)
  • [6] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [7] RGBD GS-ICP SLAM
    Ha, Seongbo
    Yeon, Jiung
    Yu, Hyeonwoo
    [J]. COMPUTER VISION - ECCV 2024, PT XXXVI, 2025, 15094 : 180 - 197
  • [8] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
    Keetha, Nikhil
    Karhade, Jay
    Jatavallabhula, Krishna Murthy
    Yang, Gengshan
    Scherer, Sebastian
    Ramanan, Deva
    Luiten, Jonathon
    [J]. 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21357 - 21366
  • [9] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
    Kerbl, Bernhard
    Kopanas, Georgios
    Leimkuehler, Thomas
    Drettakis, George
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [10] Segment Anything
    Kirillov, Alexander
    Mintun, Eric
    Ravi, Nikhila
    Mao, Hanzi
    Rolland, Chloe
    Gustafson, Laura
    Xiao, Tete
    Whitehead, Spencer
    Berg, Alexander C.
    Lo, Wan-Yen
    Dolla'r, Piotr
    Girshick, Ross
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3992 - 4003