Data-driven segmentation of observation-level logistic regression models

被引:0
作者
Choi, Yunjin [1 ]
Park, No-Wook [2 ]
Lee, Woojoo [3 ]
机构
[1] Univ Seoul, Dept Stat, Seoul, South Korea
[2] Inha Univ, Dept Geoinformat Engn, Incheon 22212, South Korea
[3] Seoul Natl Univ, Grad Sch Publ Hlth, Dept Publ Hlth Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
data-adaptive segmentation; fused lasso; heterogeneous data; landslide observations; observation-based logistic regression; penalized regression; LANDSLIDE SUSCEPTIBILITY; STATISTICAL-ANALYSIS; ALGORITHM; PATH; GIS;
D O I
10.1093/jrsssc/qlaf015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study proposes a data-adaptive method to segment individual observation-based logistic regression models, focusing on motivating binary landslide data. Our method assigns observation-specific regression models and utilizes a grouped fused lasso penalty for data-adaptive model fusion when common regression coefficients are desired. However, when inherent differences persist, the models remain separate, resulting in distinct regression coefficients. To handle the large number of parameters arising from individual observation-based models, we develop a novel alternating direction method of multipliers-based algorithm. Our numerical study demonstrates improved prediction performance over conventional logistic regression models by leveraging heterogeneous data characteristics.
引用
收藏
页数:23
相关论文
共 34 条
[11]   Clustering in linear-mixed models with a group fused lasso penalty [J].
Heinzl, Felix ;
Tutz, Gerhard .
BIOMETRICAL JOURNAL, 2014, 56 (01) :44-68
[12]   A Path Algorithm for the Fused Lasso Signal Approximator [J].
Hoefling, Holger .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) :984-1006
[13]   A multivariate regression approach to association analysis of a quantitative trait network [J].
Kim, Seyoung ;
Sohn, Kyung-Ah ;
Xing, Eric P. .
BIOINFORMATICS, 2009, 25 (12) :I204-I212
[14]   Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea [J].
Lee, S ;
Choi, J ;
Min, K .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (11) :2037-2052
[15]   Statistical analysis of landslide susceptibility at Yongin, Korea [J].
Lee, S ;
Min, K .
ENVIRONMENTAL GEOLOGY, 2001, 40 (09) :1095-1113
[16]   GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy [J].
Mancini, F. ;
Ceppi, C. ;
Ritrovato, G. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2010, 10 (09) :1851-1864
[17]   Change-point estimators with true identification property [J].
Ng, Chi Tim ;
Lee, Woojoo ;
Lees, Youngjo .
BERNOULLI, 2018, 24 (01) :616-660
[18]  
Owen AB, 2007, J MACH LEARN RES, V8, P761
[19]   Adaptive nonparametric regression with the K-nearest neighbour fused lasso [J].
Padilla, Oscar Hernan Madrid ;
Sharpnack, James ;
Chen, Yanzhen ;
Witten, Daniela M. .
BIOMETRIKA, 2020, 107 (02) :293-310
[20]  
Pan W, 2013, J MACH LEARN RES, V14, P1865