Data-driven segmentation of observation-level logistic regression models

被引:0
作者
Choi, Yunjin [1 ]
Park, No-Wook [2 ]
Lee, Woojoo [3 ]
机构
[1] Univ Seoul, Dept Stat, Seoul, South Korea
[2] Inha Univ, Dept Geoinformat Engn, Incheon 22212, South Korea
[3] Seoul Natl Univ, Grad Sch Publ Hlth, Dept Publ Hlth Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
data-adaptive segmentation; fused lasso; heterogeneous data; landslide observations; observation-based logistic regression; penalized regression; LANDSLIDE SUSCEPTIBILITY; STATISTICAL-ANALYSIS; ALGORITHM; PATH; GIS;
D O I
10.1093/jrsssc/qlaf015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study proposes a data-adaptive method to segment individual observation-based logistic regression models, focusing on motivating binary landslide data. Our method assigns observation-specific regression models and utilizes a grouped fused lasso penalty for data-adaptive model fusion when common regression coefficients are desired. However, when inherent differences persist, the models remain separate, resulting in distinct regression coefficients. To handle the large number of parameters arising from individual observation-based models, we develop a novel alternating direction method of multipliers-based algorithm. Our numerical study demonstrates improved prediction performance over conventional logistic regression models by leveraging heterogeneous data characteristics.
引用
收藏
页数:23
相关论文
共 34 条
[1]  
Akaike H., 1973, Selected papers of hirotugu akaike, DOI [DOI 10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-015]
[2]   A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey [J].
Akgun, Aykut .
LANDSLIDES, 2012, 9 (01) :93-106
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   More Powerful Selective Inference for the Graph Fused Lasso [J].
Chen, Yiqun ;
Jewell, Sean ;
Witten, Daniela .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) :577-587
[5]   Recovering Trees with Convex Clustering [J].
Chi, Eric C. ;
Steinerberger, Stefan .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (03) :383-407
[6]   Splitting Methods for Convex Clustering [J].
Chi, Eric C. ;
Lange, Kenneth .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (04) :994-1013
[7]   A modified generalized lasso algorithm to detect local spatial clusters for count data [J].
Choi, Hosik ;
Song, Eunjung ;
Hwang, Seung-sik ;
Lee, Woojoo .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (04) :537-563
[8]   Adaptive Convex Clustering of Generalized Linear Models With Application in Purchase Likelihood Prediction [J].
Chu, Shuyu ;
Jiang, Huijing ;
Xue, Zhengliang ;
Deng, Xinwei .
TECHNOMETRICS, 2021, 63 (02) :171-183
[9]   Logistic Regression analysis in the evaluation of mass movements susceptibility: The Aspromonte case study, Calabria, Italy [J].
Greco, R. ;
Sorriso-Valvo, M. ;
Catalano, E. .
ENGINEERING GEOLOGY, 2007, 89 (1-2) :47-66
[10]   Network Lasso: Clustering and Optimization in Large Graphs [J].
Hallac, David ;
Leskovec, Jure ;
Boyd, Stephen .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :387-396