Hot deformation physical mechanisms and a unified constitutive model of a solid solution Ti55511 alloy deformed in the two-phase region

被引:7
作者
Zhang, Huijie [1 ]
Lin, Y. C. [1 ,2 ]
Su, Gang [1 ]
Xie, Yongfu [3 ]
Qiu, Wei [3 ]
Zeng, Ningfu [1 ]
Zhang, Song [1 ]
Wu, Guicheng [1 ]
机构
[1] Cent South Univ, Sch Mech & Elect Engn, Changsha 410083, Peoples R China
[2] State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
[3] Guizhou Anda Aviat Forging Co Ltd, Anshun 561005, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2025年 / 34卷
关键词
Ti alloy; Hot deformation; Model; Continuous dynamic recrystallization; Spheroidization; HIGH-TEMPERATURE DEFORMATION; MODIFIED JOHNSON-COOK; TC18; TITANIUM-ALLOY; FLOW BEHAVIOR; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURE EVOLUTION; DISLOCATION DENSITY; PLASTIC-DEFORMATION; WORKING; GLOBULARIZATION;
D O I
10.1016/j.jmrt.2024.12.105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the flow behaviors and microstructure evolution of a solid solution Ti55511 alloy deformed in the two-phase region are investigated by hot compression experiments. Subsequently, The spheroidization mechanisms of alpha phases and the refinement mechanism of (3 matrix are analyzed. The alloy exhibits obvious work hardening (WH) and flow softening characteristics. The secondary alpha phases gradually precipitate and spheroidize, while the primary alpha phases dissolute above the solution temperature or coarsen when the alloy is deformed below the solution temperature. Meanwhile, the (3 matrix undergoes continuous dynamic recrystallization (CDRX) behavior. The increase of deformation amounts promotes the simultaneous precipitation and spheroidization of lamellar alpha phases. Raising deformation temperature inhibits the precipitation and spheroidization of lamellar alpha phases. However, the maximum values of precipitated and spheroidized lamellar alpha phase occur at 0.01 s(-1). Higher strain rate can promote CDRX of (3 matrix between 1003 and 1033 K, but inhibit it between 1063 and 1123 K, indicating differences in the dynamic recrystallization (DRX) mechanism at different temperature regions. A unified constitutive model based on physical mechanisms is proposed. The model takes into account both WH and grain boundary strengthening effects by coupling all parts of phases. Furthermore, the dynamic softening, including dynamic recovery (DRV), spheroidization of lamellar alpha phases, and CDRX of the (3 matrix, are also considered. Material constants are determined using a genetic algorithm (GA), and the experimental data align well with the predicted data. Finally, process parameters are optimized based on the model to achieve favorable microstructures.
引用
收藏
页码:1591 / 1610
页数:20
相关论文
共 78 条
[1]   Microstructure and mechanical behavior of hot compressed Ti-6V-6Mo-6Fe-3Al [J].
Abbasi, S. M. ;
Momeni, A. ;
Akhondzadeh, A. ;
Mirsaed, S. M. Ghazi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 639 :21-28
[2]   Detailed measurement of the e+e- pair continuum in p plus p and Au plus Au collisions at √sNN=200 GeV and implications for direct photon production [J].
Adare, A. ;
Afanasiev, S. ;
Aidala, C. ;
Ajitanand, N. N. ;
Akiba, Y. ;
Al-Bataineh, H. ;
Alexander, J. ;
Al-Jamel, A. ;
Aoki, K. ;
Aphecetche, L. ;
Armendariz, R. ;
Aronson, S. H. ;
Asai, J. ;
Atomssa, E. T. ;
Averbeck, R. ;
Awes, T. C. ;
Azmoun, B. ;
Babintsev, V. ;
Baksay, G. ;
Baksay, L. ;
Baldisseri, A. ;
Barish, K. N. ;
Barnes, P. D. ;
Bassalleck, B. ;
Bathe, S. ;
Batsouli, S. ;
Baublis, V. ;
Bauer, F. ;
Bazilevsky, A. ;
Belikov, S. ;
Bennett, R. ;
Berdnikov, Y. ;
Bickley, A. A. ;
Bjorndal, M. T. ;
Boissevain, J. G. ;
Borel, H. ;
Boyle, K. ;
Brooks, M. L. ;
Brown, D. S. ;
Bucher, D. ;
Buesching, H. ;
Bumazhnov, V. ;
Bunce, G. ;
Burward-Hoy, J. M. ;
Butsyk, S. ;
Campbell, S. ;
Chai, J-S. ;
Chang, B. S. ;
Charvet, J-L. ;
Chernichenko, S. .
PHYSICAL REVIEW C, 2010, 81 (03)
[3]   On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals [J].
Arsenlis, A ;
Parks, DM ;
Becker, R ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (06) :1213-1246
[4]   Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J].
Babu, Bijish ;
Lindgren, Lars-Erik .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 50 :94-108
[5]   An alternative to kinematic hardening in classical plasticity [J].
Barlat, Frederic ;
Gracio, Jose J. ;
Lee, Myoung-Gyu ;
Rauch, Edgar F. ;
Vincze, Gabriela .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (09) :1309-1327
[6]   A DISLOCATION MODEL FOR STRESS-STRAIN BEHAVIOUR OF POLYCRYSTALLINE ALPHA-FE WITH SPECIAL EMPHASIS ON VARIATION OF DENSITIES OF MOBILE AND IMMOBILE DISLOCATIONS [J].
BERGSTROM, Y .
MATERIALS SCIENCE AND ENGINEERING, 1970, 5 (04) :193-+
[7]  
Bergstrom Y., 1983, Reviews on Powder Metallurgy and Ceramics, vol, V2, P79
[8]   Constitutive modeling and fracture behavior of a biomedical Ti-13Nb-13Zr alloy [J].
Bobbili, Ravindranadh ;
Madhu, Vemuri .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 700 :82-91
[9]   A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy [J].
Bobbili, Ravindranadh ;
Ramudu, B. Venkata ;
Madhu, Vemuri .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 :295-303
[10]   Hot working of Ti-6Al-4V with a complex initial microstructure [J].
Bodunrin, Michael O. ;
Chown, Lesley H. ;
van der Merwe, Josias W. ;
Alaneme, Kenneth K. .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2019, 12 (05) :857-874