Artificial Intelligence-Driven Assessment of Coronary Computed Tomography Angiography for Intermediate Stenosis: Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve

被引:1
作者
Jo, Jung In [1 ]
Koo, Hyun Jung [2 ,3 ]
Kang, Joon Won [2 ,3 ]
Kim, Young Hak [4 ]
Yang, Dong Hyun [2 ,3 ]
机构
[1] Natl Med Ctr, Dept Radiol, Seoul, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, Seoul, South Korea
[3] Univ Ulsan, Res Inst Radiol, Coll Med, Asan Med Ctr, Seoul, South Korea
[4] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Cardiol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
artificial intelligence; computed tomography angiography; coronary angiography; coronary stenosis; fractional flow reserve; myocardial; CT ANGIOGRAPHY; QUANTIFICATION; PERFORMANCE; LESIONS;
D O I
10.1016/j.amjcard.2024.12.011
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We aimed to compare artificial intelligence (AI)-based coronary stenosis evaluation of coronary computed tomography angiography (CCTA) with its quantitative counterpart of invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR). This single-center retrospective study included 195 symptomatic patients (mean age 61 10 years, 149 men, 585 coronary arteries) with 215 intermediate coronary lesions, with quantitative coronary angiography (QCA) diameter stenosis ranging from 20% to 80%. An AI-driven research prototype (AI-CCTA) was used to quantify stenosis on CCTA images. The diagnostic accuracy of AICCTA was assessed on a per-vessel basis using ICA stenosis grading (with >= 50% stenosis) or invasive FFR (<= 0.80) as reference standards. AI-driven diameter stenosis was correlated with the QCA results and expert manual measurements subsequently. The disease prevalence in the 585 coronary arteries, as determined by invasive angiography (>= 50%), was 46.5%. AI-CCTA exhibited sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC) of 71.7%, 89.8%, 85.9%, 78.5%, and 0.81, respectively. The diagnostic performance of AI-CCTA was moderate for the 215 intermediate lesions assessed using QCA and FFR, with an AUC of 0.63 for QCA and FFR. AI-CCTA demonstrated a moderate correlation with QCA (r = 0.42, p <0.001) for measuring the degree of stenosis, which was notably better than the results from manual quantification versus QCA (r = 0.26, p = 0.001). In conclusion, AI-driven CCTA analysis exhibited promising results. AI-CCTA demonstrated a moderate relation with QCA in intermediate coronary stenosis lesions; however, its results surpassed those of manual evaluations. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 28 条
[1]   Human AI Teaming for Coronary CT Angiography Assessment: Impact on Imaging Workflow and Diagnostic Accuracy [J].
Andre, Florian ;
Fortner, Philipp ;
Aurich, Matthias ;
Seitz, Sebastian ;
Jatsch, Ann-Kathrin ;
Schoebinger, Max ;
Wels, Michael ;
Kraus, Martin ;
Guelsuen, Mehmet Akif ;
Frey, Norbert ;
Sommer, Andre ;
Goerich, Johannes ;
Buss, Sebastian J. .
DIAGNOSTICS, 2023, 13 (23)
[2]  
Budoff MJ, 2005, CIRCULATION, V112, P598, DOI [10.1016/j.jacc.2005.04.033, 10.1161/CIRCULATIONAHA.105.168237]
[3]   Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease [J].
Chen, Meng ;
Wang, Ximing ;
Hao, Guangyu ;
Cheng, Xujie ;
Ma, Chune ;
Guo, Ning ;
Hu, Su ;
Tao, Qing ;
Yao, Feirong ;
Hu, Chunhong .
BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1113)
[4]   CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study [J].
Choi, Andrew D. ;
Marques, Hugo ;
Kumar, Vishak ;
Griffin, William F. ;
Rahban, Habib ;
Karlsberg, Ronald P. ;
Zeman, Robert K. ;
Katz, Richard J. ;
Earls, James P. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) :470-476
[5]   Artificial Intelligence Advancements in the Cardiovascular Imaging of Coronary Atherosclerosis [J].
Covas, Pedro ;
De Guzman, Eison ;
Barrows, Ian ;
Bradley, Andrew J. ;
Choi, Brian G. ;
Krepp, Joseph M. ;
Lewis, Jannet F. ;
Katz, Richard ;
Tracy, Cynthia M. ;
Zeman, Robert K. ;
Earls, James P. ;
Choi, Andrew D. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[6]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335
[7]   Quantification of nonculprit coronary lesions: Comparison of cardiac 64-MDCT and invasive coronary angiography [J].
Dodd, Jonathan D. ;
Rieber, Johannes ;
Pomerantsev, Eugene ;
Chaithiraphan, Vithaya ;
Achenbach, Stephan ;
Moreiras, Javier M. ;
Abbara, Suhny ;
Hoffmann, Udo ;
Brady, Thomas J. ;
Cury, Ricardo C. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2008, 191 (02) :432-438
[8]   Coronary Artery Stenosis in High-risk Patients: 64-Section CT and Coronary Angiography-Prospective Study and Analysis of Discordance [J].
Gouya, Herve ;
Varenne, Olivier ;
Trinquart, Ludovic ;
Touze, Emmanuel ;
Vignaux, Olivier ;
Spaulding, Christian ;
Mas, Jean-Louis ;
Sablayrolles, Jean-Louis .
RADIOLOGY, 2009, 252 (02) :377-385
[9]   AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve A CREDENCE Trial Substudy [J].
Griffin, William F. ;
Choi, Andrew D. ;
Riess, Joanna S. ;
Marques, Hugo ;
Chang, Hyuk-Jae ;
Choi, Jung Hyun ;
Doh, Joon-Hyung ;
Her, Ae-Young ;
Koo, Bon-Kwon ;
Nam, Chang-Wook ;
Park, Hyung-Bok ;
Shin, Sang-Hoon ;
Cole, Jason ;
Gimelli, Alessia ;
Khan, Muhammad Akram ;
Lu, Bin ;
Gao, Yang ;
Nabi, Faisal ;
Nakazato, Ryo ;
Schoepf, U. Joseph ;
Driessen, Roel S. ;
Bom, Michiel J. ;
Thompson, Randall ;
Jang, James J. ;
Ridner, Michael ;
Rowan, Chris ;
Avelar, Erick ;
Genereux, Philippe ;
Knaapen, Paul ;
de Waard, Guus A. ;
Pontone, Gianluca ;
Andreini, Daniele ;
Earls, James P. .
JACC-CARDIOVASCULAR IMAGING, 2023, 16 (02) :193-205
[10]   2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain [J].
Gulati, Martha ;
Levy, Phillip D. ;
Mukherjee, Debabrata ;
Amsterdam, Ezra ;
Birtcher, Kim K. ;
Blankstein, Ron ;
Boyd, Jack ;
Bullock-Palmer, Renee P. ;
Conejo, Theresa ;
Diercks, Deborah B. ;
Gentile, Federico ;
Greenwood, John P. ;
Hess, Erik P. ;
Hollenberg, Steven M. ;
Jaber, Wael A. ;
Jneid, Hani ;
Joglar, Jose A. ;
Morrow, David A. ;
O'Connor, Robert E. ;
Ross, Michael A. ;
Shaw, Leslee J. ;
O'Gara, Patrick T. ;
Beckman, Joshua A. ;
Levine, Glenn N. ;
Al-Kharib, Sana M. ;
Armbruster, Anastasia L. ;
Brindis, Ralph G. ;
Cigarroa, Joaquin E. ;
Fuentes, Lisa de las ;
Deswal, Anita ;
Dixon, Dave L. ;
Fleisher, Lee A. ;
Hernandez, Adrian F. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (22) :E187-E285