A VELOCITY SELF-LEARNING ALGORITHM FOR TIME-OPTIMAL TRAJECTORY PLANNING ALONG THE FULLY SPECIFIED PATH-PART I

被引:0
作者
Nan, Wenhu [1 ]
Qin, Haojun [1 ]
机构
[1] Lanzhou Univ Technol, Key Lab Heavy Duty Flexible Robot Mech Ind, Lanzhou 730050, Peoples R China
来源
REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE | 2025年 / 70卷 / 01期
关键词
Industrial handling robot; Velocity self-learning; Hermite interpolation; Correction trajectory; Actual joint torque; ROBOTIC MANIPULATORS;
D O I
10.59277/RRST-EE.2025.1.19
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In response to the problem of uncertainty in the system dynamics model during the time-optimal trajectory planning for the industrial handling robots, a novel online self-learning model-free time-optimal trajectory planning method is proposed. First, offline kinematic constraints and the Hermite interpolation algorithm are used to obtain the optimal spline velocity curve under kinematic constraints. Then, online trajectory data of the robot's operation is collected, and the trajectory generation method using a self-learning strategy is employed to refine the trajectory iteratively, resulting in a time-optimal trajectory under actual dynamic constraints. Finally, taking the ur5e cooperative robot and ABB IRB9670-235 industrial robot as the experimental platform, experiments verify the effectiveness and efficiency of the proposed method.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 18 条
[1]   Riemannian Formulation of Pontryagin's Maximum Principle for the Optimal Control of Robotic Manipulators [J].
Antonio Rojas-Quintero, Juan ;
Dubois, Francois ;
Cesar Ramirez-de-Avila, Hedy .
MATHEMATICS, 2022, 10 (07)
[2]   A Bisection Algorithm for Time-Optimal Trajectory Planning Along Fully Specified Paths [J].
Barnett, Eric ;
Gosselin, Clement .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (01) :131-145
[3]  
Chatzilygeroudis K, 2017, IEEE INT C INT ROBOT, P51, DOI 10.1109/IROS.2017.8202137
[4]   Time-Optimal Path Following for Robots With Convex-Concave Constraints Using Sequential Convex Programming [J].
Debrouwere, Frederik ;
Van Loock, Wannes ;
Pipeleers, Goele ;
Quoc Tran Dinh ;
Diehl, Moritz ;
De Schutter, Joris ;
Swevers, Jan .
IEEE TRANSACTIONS ON ROBOTICS, 2013, 29 (06) :1485-1495
[5]   Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks [J].
Khader, Shahbaz Abdul ;
Yin, Hang ;
Falco, Pietro ;
Kragic, Danica .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) :4321-4328
[6]   Sampling-Based Methods for Motion Planning with Constraints [J].
Kingston, Zachary ;
Moll, Mark ;
Kavraki, Lydia E. .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 :159-185
[7]  
Lei X., 2018, J. of Robotics
[8]   Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection [J].
Levine, Sergey ;
Pastor, Peter ;
Krizhevsky, Alex ;
Ibarz, Julian ;
Quillen, Deirdre .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (4-5) :421-436
[9]   A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis [J].
Pham, Hung ;
Pham, Quang-Cuong .
IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (03) :645-659
[10]   A General, Fast, and Robust Implementation of the Time-Optimal Path Parameterization Algorithm [J].
Quang-Cuong Pham .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (06) :1533-1540