An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution

被引:0
|
作者
Sultan, Naveed [1 ]
Hajian, Amir [1 ]
Aramvith, Supavadee [2 ]
机构
[1] Chulalongkorn Univ, Dept Elect Engn, Bangkok, Thailand
[2] Chulalongkorn Univ, Dept Elect Engn, Multimedia Data Analyt & Proc Res Unit, Bangkok, Thailand
关键词
image super-resolution; remote sensing images; spatial attention; transformer;
D O I
10.1109/ECTI-CON60892.2024.10595015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, convolutional neural networks (CNNs) have achieved remarkable advancement in the field of remote sensing image super-resolution due to the complexity and variability of textures and structures in remote sensing images (RSIs), which often repeat in the same images but differ across others. Current deep learning-based super-resolution models focus less on high-frequency features, which leads to suboptimal performance in capturing contours, textures, and spatial information. State-of-the-art CNN-based methods now focus on the feature extraction of RSIs using attention mechanisms. However, these methods are still incapable of effectively identifying and utilizing key content attention signals in RSIs. To solve this problem, we proposed an advanced feature extraction module called Channel and Spatial Attention Feature Extraction (CSA-FE) for effectively extracting the features by using the channel and spatial attention incorporated with the standard vision transformer (ViT). The proposed method trained over the UCMerced dataset on scales 2, 3, and 4. The experimental results show that our proposed method helps the model focus on the specific channels and spatial locations containing high-frequency information so that the model can focus on relevant features and suppress irrelevant ones, which enhances the quality of super-resolved images. Our model achieved superior performance compared to various existing models.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A spectral and spatial transformer for hyperspectral remote sensing image super-resolution
    Wang, Bingqian
    Chen, Jianhua
    Wang, Huajun
    Tang, Yipeng
    Chen, Jiongling
    Jiang, Ye
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [22] Remote sensing image super-resolution based on improved sparse representation
    Zhu F.-Z.
    Liu Y.
    Huang X.
    Bai H.-Y.
    Wu H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (03): : 718 - 725
  • [23] Inception residual attention network for remote sensing image super-resolution
    Lei, Pengcheng
    Liu, Cong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (24) : 9565 - 9587
  • [24] Remote Sensing Image Super-Resolution With Residual Split Attention Mechanism
    Chen, Xitong
    Wu, Yuntao
    Lu, Tao
    Kong, Quan
    Wang, Jiaming
    Wang, Yu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1 - 13
  • [25] Lightweight Mars remote sensing image super-resolution reconstruction network
    Geng M.
    Wu F.
    Wang D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (12): : 1487 - 1498
  • [26] Hyper-Laplacian Prior for Remote Sensing Image Super-Resolution
    Zhao, Kanghui
    Lu, Tao
    Wang, Jiaming
    Zhang, Yanduo
    Jiang, Junjun
    Xiong, Zixiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] An improved generative adversarial network for remote sensing image super-resolution
    Guo, Jifeng
    Lv, Feicai
    Shen, Jiayou
    Liu, Jing
    Wang, Mingzhi
    IET IMAGE PROCESSING, 2023, 17 (06) : 1852 - 1863
  • [28] RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image
    Dong, Runmin
    Zhang, Lixian
    Fu, Haohuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Unsupervised Remote Sensing Image Super-Resolution Guided by Visible Images
    Zhang, Zili
    Tian, Yan
    Li, Jianxiang
    Xu, Yiping
    REMOTE SENSING, 2022, 14 (06)
  • [30] UNSUPERVISED REMOTE SENSING IMAGE SUPER-RESOLUTION USING CYCLE CNN
    Wang, Pengrui
    Zhang, Haopeng
    Zhou, Feng
    Jiang, Zhiguo
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3117 - 3120