An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution

被引:0
|
作者
Sultan, Naveed [1 ]
Hajian, Amir [1 ]
Aramvith, Supavadee [2 ]
机构
[1] Chulalongkorn Univ, Dept Elect Engn, Bangkok, Thailand
[2] Chulalongkorn Univ, Dept Elect Engn, Multimedia Data Analyt & Proc Res Unit, Bangkok, Thailand
关键词
image super-resolution; remote sensing images; spatial attention; transformer;
D O I
10.1109/ECTI-CON60892.2024.10595015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, convolutional neural networks (CNNs) have achieved remarkable advancement in the field of remote sensing image super-resolution due to the complexity and variability of textures and structures in remote sensing images (RSIs), which often repeat in the same images but differ across others. Current deep learning-based super-resolution models focus less on high-frequency features, which leads to suboptimal performance in capturing contours, textures, and spatial information. State-of-the-art CNN-based methods now focus on the feature extraction of RSIs using attention mechanisms. However, these methods are still incapable of effectively identifying and utilizing key content attention signals in RSIs. To solve this problem, we proposed an advanced feature extraction module called Channel and Spatial Attention Feature Extraction (CSA-FE) for effectively extracting the features by using the channel and spatial attention incorporated with the standard vision transformer (ViT). The proposed method trained over the UCMerced dataset on scales 2, 3, and 4. The experimental results show that our proposed method helps the model focus on the specific channels and spatial locations containing high-frequency information so that the model can focus on relevant features and suppress irrelevant ones, which enhances the quality of super-resolved images. Our model achieved superior performance compared to various existing models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [2] TRANSCYCLEGAN: AN APPROACH FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Zhai, Lujun
    Wang, Yonghui
    Cui, Suxia
    Zhou, Yu
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 61 - 64
  • [3] Remote Sensing Image Super-resolution: Challenges and Approaches
    Yang, Daiqin
    Li, Zimeng
    Xia, Yatong
    Chen, Zhenzhong
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 196 - 200
  • [4] TRANSFORMATION CONSISTENCY FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Deng, Kai
    Yao, Ping
    Cheng, Siyuan
    Bi, Junyu
    Zhang, Kun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 201 - 205
  • [5] MAP super-resolution reconstruction of remote sensing image
    Liu Tao
    Qian Feng
    Zhang Bao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (10) : 884 - 892
  • [6] A2M: An Amplification-Arbitrary Module for Remote Sensing Image Super-Resolution
    Xue, Yuan
    Wang, Zheyuan
    Li, Liangliang
    Ma, Hongbing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] Single Image Super-Resolution with Application to Remote-Sensing Image
    Deeba, Farah
    Dharejo, Fayaz Ali
    Zhou, Yuanchun
    Ghaffar, Abdul
    Memon, Mujahid Hussain
    Kun, She
    2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [8] Efficient Swin Transformer for Remote Sensing Image Super-Resolution
    Kang, Xudong
    Duan, Puhong
    Li, Jier
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6367 - 6379
  • [9] Saliency-Guided Remote Sensing Image Super-Resolution
    Liu, Baodi
    Zhao, Lifei
    Li, Jiaoyue
    Zhao, Hengle
    Liu, Weifeng
    Li, Ye
    Wang, Yanjiang
    Chen, Honglong
    Cao, Weijia
    REMOTE SENSING, 2021, 13 (24)
  • [10] Information Purification Network for Remote Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xing, Linxin
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (02): : 310 - 321