Degenerate Complex Monge-Ampe`re Equations with Non-Kahler Forms in Bounded Domains

被引:0
作者
Salouf, Mohammed [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Informat Math & Their Applicat LIMA, El Jadida 24000, Morocco
关键词
Monge-Ampere type equations; Cegrell's classes; DIRICHLET PROBLEM; SINGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. In this paper, we study weak solutions to complex MongeAmpere equations of the form (omega + dd (c)phi)n = F(phi, <middle dot>) d mu on a bounded strictly pseudoconvex domain in C-n, where omega is a smooth (1, 1)-form, 0 <= F is a continuous non-decreasing function, and mu is a positive non-pluripolar measure. Our results extend previous works of Ko & lstrok;odziej and Nguyen [KN15, KN23a, KN23b] who study bounded Benelkourchi [Ben09, Ben15], and others who treat the case when omega = 0 and/or F = 1.
引用
收藏
页码:131 / 156
页数:26
相关论文
共 32 条
[1]   A Dirichlet problem for the complex Monge-Ampere operator in F(f) [J].
Ahag, Per .
MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (01) :123-138
[2]  
Ahag P, 2012, MATH SCAND, V110, P235
[3]   Monge-Ampere measures on pluripolar sets [J].
Ahag, Per ;
Cegrell, Urban ;
Czyz, Rafal ;
Pham Hoang Hiep .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (06) :613-627
[4]  
[Anonymous], 1979, PROC C 1977 LECT NOT, V48, P3950
[5]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[6]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[7]  
Benelkourchi S., 2009, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., V86, P57
[8]  
BENELKOURCHI S., 2015, Int. J. Partial Differ. Equ., P8, DOI DOI 10.1155/2015/947819
[9]   Weak solutions to the complex Monge-Ampere equation on hyperconvex domains [J].
Benelkourchi, Slimane .
ANNALES POLONICI MATHEMATICI, 2014, 112 (03) :239-246
[10]   Weighted Pluricomplex Energy [J].
Benelkourchi, Slimane .
POTENTIAL ANALYSIS, 2009, 31 (01) :1-20