Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions

被引:0
作者
Monsif, L. [1 ]
El Ghordaf, J. [1 ]
Oukessou, M. [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Caputo-Fabrizio fractional integral; Caputo-Fabrizio fractional derivative; Banach fixed point theorem; Gronwall theorem; RESPECT;
D O I
10.5269/bspm.67675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we establish the existence and uniqueness of solutions for nonlinear hybrid fractional differential equations involving Caputo-Fabrizio fractional derivatives of order & rhov; is an element of (0, 1). The proofs are based on Banach's fixed point theorem and some basic concepts of Caputo-Fabrizio fractional analysis. As an application, a nontrivial example is given in the last part of this paper to illustrate our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Existence Theory for ψ-Caputo Fractional Differential Equations [J].
Bendrici, Nadhir ;
Boutiara, Abdelatif ;
Boumedien-Zidani, Malika .
UKRAINIAN MATHEMATICAL JOURNAL, 2025, 76 (09) :1457-1471
[42]   EXISTENCE AND UNIQUENESS RESULTS FOR ψ-CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEMS INVOLVING THE p-LAPLACIAN OPERATOR [J].
El Mfadel, Ali ;
Melliani, Said ;
Elomari, M'hamed .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (01) :37-46
[43]   EXISTENCE AND UNIQUENESS RESULTS FOR FUZZY BOUNDARY VALUE PROBLEMS OF NONLINEAR DIFFERENTIAL EQUATIONS INVOLVING ATANGANA-BALEANU FRACTIONAL DERIVATIVES [J].
Zamtain, F. ;
Elomari, M. ;
Melliani, S. ;
EL Mfadel, A. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02) :579-596
[44]   A New Combination Method for Solving Nonlinear Liouville-Caputo and Caputo-Fabrizio Time-Fractional Reaction-Diffusion-Convection Equations [J].
Khalouta, A. ;
Kadem, A. .
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02) :199-215
[45]   Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations [J].
Kahouli, Omar ;
Ben Makhlouf, Abdellatif ;
Mchiri, Lassaad ;
Kumar, Pushpendra ;
Ben Ali, Naim ;
Aloui, Ali .
SYMMETRY-BASEL, 2022, 14 (11)
[46]   Hybrid cubic and hyperbolic b-spline collocation methods for solving fractional Painlevé and Bagley-Torvik equations in the Conformable, Caputo and Caputo-Fabrizio fractional derivatives [J].
Barzehkar, Nahid ;
Jalilian, Reza ;
Barati, Ali .
BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
[47]   Hybrid cubic and hyperbolic b-spline collocation methods for solving fractional Painlevé and Bagley-Torvik equations in the Conformable, Caputo and Caputo-Fabrizio fractional derivatives [J].
Nahid Barzehkar ;
Reza Jalilian ;
Ali Barati .
Boundary Value Problems, 2024
[48]   Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation [J].
Sivashankar, Murugesan ;
Sabarinathan, Sriramulu ;
Govindan, Vediyappan ;
Fernandez-Gamiz, Unai ;
Noeiaghdam, Samad .
AIMS MATHEMATICS, 2023, 8 (02) :2720-2735
[49]   A numerical study on fractional optimal control problems described by Caputo-Fabrizio fractional integro-differential equation [J].
Dehestani, Haniye ;
Ordokhani, Yadollah .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2023, 44 (04) :1873-1892
[50]   Existence and stability results of f-Caputo modified proportional fractional delay differential systems with boundary conditions [J].
Hammad, Hasanen A. ;
Liu, Zhenhai ;
Abdalla, Manal Elzain Mohamed .
BOUNDARY VALUE PROBLEMS, 2025, 2025 (01)