Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions

被引:0
作者
Monsif, L. [1 ]
El Ghordaf, J. [1 ]
Oukessou, M. [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Caputo-Fabrizio fractional integral; Caputo-Fabrizio fractional derivative; Banach fixed point theorem; Gronwall theorem; RESPECT;
D O I
10.5269/bspm.67675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we establish the existence and uniqueness of solutions for nonlinear hybrid fractional differential equations involving Caputo-Fabrizio fractional derivatives of order & rhov; is an element of (0, 1). The proofs are based on Banach's fixed point theorem and some basic concepts of Caputo-Fabrizio fractional analysis. As an application, a nontrivial example is given in the last part of this paper to illustrate our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
[31]   An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space [J].
Al-Smadi, Mohammed ;
Djeddi, Nadir ;
Momani, Shaher ;
Al-Omari, Shrideh ;
Araci, Serkan .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[32]   Existence and Uniqueness of Solutions for Nonlinear Fractional Boundary Value Problems with ψ-Caputo Derivatives [J].
Solhi, Salma ;
Anaama, Essaid ;
Kajouni, Ahmed ;
Hilal, Khalid .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
[33]   Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrodinger equations [J].
Bouzenna, Fatma El-Ghenbazia ;
Meftah, Mohammed Tayeb ;
Difallah, Mosbah .
PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01)
[34]   A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator [J].
Anjam, Yasir Nadeem ;
Shafqat, Ramsha ;
Sarris, Ioannis E. ;
Ur Rahman, Mati ;
Touseef, Sajida ;
Arshad, Muhammad .
FRACTAL AND FRACTIONAL, 2022, 6 (11)
[35]   EXISTENCE AND UNIQUENESS RESULTS FOR SEQUENTIAL ψ-HILFER IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS [J].
Karthikeyan, Kulandhivel ;
Murugapandian, Gobi Selvaraj ;
Ege, Ozgur .
HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (04) :785-805
[36]   Monotone iterative technique for a sequential δ-Caputo fractional differential equations with nonlinear boundary conditions [J].
Baitiche, Zidane ;
Derbazi, Choukri ;
Salim, Abdelkrim ;
Benchohra, Mouffak .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (03) :553-565
[37]   A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment [J].
Moore, Elvin J. ;
Sirisubtawee, Sekson ;
Koonprasert, Sanoe .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[38]   EXISTENCE RESULTS FOR A NONLINEAR GENERALIZED CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM [J].
Yalcin, Serap ;
Cetin, Erbil ;
Topal, Fatma Serap .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06) :3639-3656
[39]   Existence and uniqueness of solution of a tripled system of fractional Langevin differential equations with cyclic boundary conditions [J].
Baghani, Hamid ;
Alzabut, Jehad ;
Nieto, Juan J. ;
Salim, Abdelkrim .
CARPATHIAN JOURNAL OF MATHEMATICS, 2025, 41 (02) :273-298
[40]   On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative [J].
Shah, Kamal ;
Jarad, Fahd ;
Abdeljawad, Thabet .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2305-2313