Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions

被引:0
作者
Monsif, L. [1 ]
El Ghordaf, J. [1 ]
Oukessou, M. [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Caputo-Fabrizio fractional integral; Caputo-Fabrizio fractional derivative; Banach fixed point theorem; Gronwall theorem; RESPECT;
D O I
10.5269/bspm.67675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we establish the existence and uniqueness of solutions for nonlinear hybrid fractional differential equations involving Caputo-Fabrizio fractional derivatives of order & rhov; is an element of (0, 1). The proofs are based on Banach's fixed point theorem and some basic concepts of Caputo-Fabrizio fractional analysis. As an application, a nontrivial example is given in the last part of this paper to illustrate our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives [J].
Zhang, Jianke ;
Ma, Xiaojue ;
Li, Lifeng .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[22]   Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives [J].
Jianke Zhang ;
Xiaojue Ma ;
Lifeng Li .
Advances in Difference Equations, 2017
[23]   Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation [J].
Kebede, Shiferaw Geremew ;
Lakoud, Assia Guezane .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[24]   Existence of Solutions for a Coupled System of Ψ-Caputo Fractional Differential Equations With Integral Boundary Conditions [J].
Poovarasan, R. ;
Govindaraj, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
[25]   Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral [J].
M. Moumen Bekkouche ;
I. Mansouri ;
A. A. Azeb Ahmed .
Journal of Applied Mathematics and Computing, 2022, 68 :4305-4316
[26]   Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral [J].
Moumen Bekkouche, M. ;
Mansouri, I. ;
Ahmed, A. A. Azeb .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) :4305-4316
[27]   ANALYTICAL AND NUMERICAL STUDY OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE [J].
Bekkouche, Mohammed Moumen ;
Ahmed, Abdelaziz Azeb ;
Yazid, Fares ;
Djeradi, Fatima Siham .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08) :2177-2193
[28]   Boundary Value Problems for Nonlinear Fractional Differential Equations With Ψ-Caputo Fractional [J].
Elomari, M. ;
Bourhim, F. E. ;
Kassidi, A. ;
El Mfadel, A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 :15-15
[29]   An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space [J].
Al-Smadi, Mohammed ;
Djeddi, Nadir ;
Momani, Shaher ;
Al-Omari, Shrideh ;
Araci, Serkan .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[30]   Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrodinger equations [J].
Bouzenna, Fatma El-Ghenbazia ;
Meftah, Mohammed Tayeb ;
Difallah, Mosbah .
PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01)