Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions

被引:0
作者
Monsif, L. [1 ]
El Ghordaf, J. [1 ]
Oukessou, M. [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Caputo-Fabrizio fractional integral; Caputo-Fabrizio fractional derivative; Banach fixed point theorem; Gronwall theorem; RESPECT;
D O I
10.5269/bspm.67675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we establish the existence and uniqueness of solutions for nonlinear hybrid fractional differential equations involving Caputo-Fabrizio fractional derivatives of order & rhov; is an element of (0, 1). The proofs are based on Banach's fixed point theorem and some basic concepts of Caputo-Fabrizio fractional analysis. As an application, a nontrivial example is given in the last part of this paper to illustrate our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative [J].
Sitthiwirattham, Thanin ;
Gul, Rozi ;
Shah, Kamal ;
Mahariq, Ibrahim ;
Soontharanon, Jarunee ;
Ansari, Khursheed J. .
AIMS MATHEMATICS, 2022, 7 (03) :4017-4037
[22]   Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives [J].
Zhang, Jianke ;
Ma, Xiaojue ;
Li, Lifeng .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[23]   Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation [J].
Kebede, Shiferaw Geremew ;
Lakoud, Assia Guezane .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[24]   Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives [J].
Jianke Zhang ;
Xiaojue Ma ;
Lifeng Li .
Advances in Difference Equations, 2017
[25]   Existence uniqueness and stability of solutions for -Caputo fractional differential iterative equation with boundary value conditions [J].
El Fadouaki, Mohamed ;
Hilal, Khalid ;
Kajouni, Ahmed ;
Lmou, Hamid .
FILOMAT, 2025, 39 (02) :629-638
[26]   Existence of Solutions for a Coupled System of Ψ-Caputo Fractional Differential Equations With Integral Boundary Conditions [J].
Poovarasan, R. ;
Govindaraj, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (09) :9456-9468
[27]   Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral [J].
M. Moumen Bekkouche ;
I. Mansouri ;
A. A. Azeb Ahmed .
Journal of Applied Mathematics and Computing, 2022, 68 :4305-4316
[28]   Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral [J].
Moumen Bekkouche, M. ;
Mansouri, I. ;
Ahmed, A. A. Azeb .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) :4305-4316
[29]   ANALYTICAL AND NUMERICAL STUDY OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE [J].
Bekkouche, Mohammed Moumen ;
Ahmed, Abdelaziz Azeb ;
Yazid, Fares ;
Djeradi, Fatima Siham .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08) :2177-2193
[30]   Boundary Value Problems for Nonlinear Fractional Differential Equations With Ψ-Caputo Fractional [J].
Elomari, M. ;
Bourhim, F. E. ;
Kassidi, A. ;
El Mfadel, A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 :15-15