A multi-omics reciprocal analysis for characterization of bacterial metabolism

被引:0
|
作者
Arini, Gabriel Santos [1 ,2 ,3 ]
Borelli, Tiago Cabral [1 ,2 ,3 ]
Ferreira, Elthon Gois [4 ]
de Felicio, Rafael [5 ]
Rezende-Teixeira, Paula [4 ]
Pedrino, Matheus [3 ,6 ]
Rabico, Franciene [3 ,6 ]
de Siqueira, Guilherme Marcelino Viana [3 ,6 ]
Mencucini, Luiz Gabriel [1 ,2 ]
Tsuji, Henrique [1 ,2 ]
Andrade, Lucas Sousa Neves [7 ]
Garrido, Leandro Maza [7 ]
Padilla, Gabriel [7 ]
Gil-de-la-Fuente, Alberto [8 ,9 ]
Wang, Mingxun [10 ]
Lopes, Norberto Peporine [2 ]
Trivella, Daniela Barretto Barbosa [5 ]
Costa-Lotufo, Leticia Veras [4 ]
Guazzaroni, Maria-Eugenia [6 ]
da Silva, Ricardo Roberto [1 ,2 ,3 ]
机构
[1] Univ Sao Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Biomol Sci, Computat Chem Biol Lab, Sao Paulo, Brazil
[2] Univ Sao Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Biomol Sci, NPPNS, Sao Paulo, Brazil
[3] Univ Sao Paulo, Sch Med, Dept Cellular & Mol Biol Ribeirao Preto, Cellular & Mol Biol Program, Sao Paulo, Brazil
[4] Univ Sao Paulo, Inst Biomed Sci, Dept Pharmacol, Marine Pharmacol Lab, Sao Paulo, Brazil
[5] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biosci Natl Lab LNBio, Campinas, Brazil
[6] Univ Sao Paulo, Univ Sao Paulo Ribeirao Preto, Sch Med, Dept Biol,MetaGenLab Lab,FFCLRP, Sao Paulo, Brazil
[7] Univ Sao Paulo, Inst Biomed Sci, Dept Microbiol, Lab Bioprod, Sao Paulo, Brazil
[8] Univ San Pablo CEU, CEU Univ Urbanizac Monteprincipe, Fac Farm, Ctr Metabol & Bioanal CEMBIO, Boadilla Del Monte, Spain
[9] Univ San Pablo, CEU Univ Urbanizac Monteprincipe, Escuela Politecn Super, Dept Tecnol Informac, Boadilla Del Monte, Spain
[10] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA USA
基金
巴西圣保罗研究基金会;
关键词
untargeted metabolomics; genomics; multi-omics analysis; bioinformactics; microbiology; MASS-SPECTROMETRY; GENE-CLUSTER; MICROMONOSPORA; IDENTIFICATION; PLATFORM;
D O I
10.3389/fmolb.2025.1515276
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Introduction Exploiting microbial natural products is a key pursuit of the bioactive compound discovery field. Recent advances in modern analytical techniques have increased the volume of microbial genomes and their encoded biosynthetic products measured by mass spectrometry-based metabolomics. However, connecting multi-omics data to uncover metabolic processes of interest is still challenging. This results in a large portion of genes and metabolites remaining unannotated. Further exacerbating the annotation challenge, databases and tools for annotation and omics integration are scattered, requiring complex computations to annotate and integrate omics datasets.Methods Here we performed a two-way integrative analysis combining genomics and metabolomics data to describe a new approach to characterize the marine bacterial isolate BRA006 and to explore its biosynthetic gene cluster (BGC) content as well as the bioactive compounds detected by metabolomics.Results and Discussion We described BRA006 genomic content and structure by comparing Illumina and Oxford Nanopore MinION sequencing approaches. Digital DNA:DNA hybridization (dDDH) taxonomically assigned BRA006 as a potential new species of the Micromonospora genus. Starting from LC-ESI(+)-HRMS/MS data, and mapping the annotated enzymes and metabolites belonging to the same pathways, our integrative analysis allowed us to correlate the compound Brevianamide F to a new BGC, previously assigned to other function.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-omics Analysis of Colorectal Cancer Metabolism
    Soga, Tomoyoshi
    CANCER SCIENCE, 2018, 109 : 193 - 193
  • [2] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [3] Multi-Omics Analysis of Fatty Acid Metabolism in Thyroid Carcinoma
    Lu, Jinghui
    Zhang, Yankun
    Sun, Min
    Ding, Changyuan
    Zhang, Lei
    Kong, Youzi
    Cai, Meng
    Miccoli, Paolo
    Ma, Chunhong
    Yue, Xuetian
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [4] Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis
    Wei, Chengjian
    Liang, Jinchang
    Wang, Rui
    Chi, Luping
    Wang, Wenjing
    Tan, Jun
    Shi, Heli
    Song, Xueru
    Cui, Zhenzhen
    Xie, Qiang
    Cheng, Dejie
    Wang, Xiaoqiang
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [5] Multi-omics analysis of meningioma samples
    Bocharov, Konstantin
    Sorokin, Anatoly
    Shurkhay, Vsevolod
    Popov, Igor
    Evgeny, Zhvansky
    Potapov, Alexander
    Nikolaev, Evgeny
    JOURNAL OF BIOTECHNOLOGY, 2018, 280 : S42 - S42
  • [6] Multi-omics analysis of aggregative multicellularity
    Edelbroek, Bart
    Westholm, Jakub Orzechowski
    Bergquist, Jonas
    Soderbom, Fredrik
    ISCIENCE, 2024, 27 (09)
  • [7] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [8] Multi-omics characterization of the monkeypox virus infection
    Huang, Yiqi
    Bergant, Valter
    Grass, Vincent
    Emslander, Quirin
    Hamad, M. Sabri
    Hubel, Philipp
    Mergner, Julia
    Piras, Antonio
    Krey, Karsten
    Henrici, Alexander
    Oellinger, Rupert
    Tesfamariam, Yonas M.
    Dalla Rosa, Ilaria
    Bunse, Till
    Sutter, Gerd
    Ebert, Gregor
    Schmidt, Florian I.
    Way, Michael
    Rad, Roland
    Bowie, Andrew G.
    Protzer, Ulrike
    Pichlmair, Andreas
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [10] Elucidation of mitochondrial energy metabolism in dormant cancer cells by multi-omics analysis
    Miyamoto, Kotaro
    Kadonosono, Tetsuya
    Kitajima, Shojiro
    Soga, Tomoyoshi
    Kondoh, Shinae
    CANCER SCIENCE, 2021, 112 : 722 - 722