The minimal periodic solutions for superquadratic autonomous Hamiltonian systems without the Palais-Smale condition

被引:0
作者
Xiao, Yuming [1 ]
Zhu, Gaosheng [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Hamiltonian systems; Periodic solutions; Minimal period; Nehari manifold; INDEX THEORY;
D O I
10.1016/j.jde.2024.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of periodic solutions with any prescribed minimal period T > 0 for even second order Hamiltonian systems and convex first order Hamiltonian systems under the weak Nehari condition instead of Ambrosetti-Rabinowitz's. To this end, we shall develop the method of Nehari manifold to directly deal with a frequently occurring problem where the Nehari set is not a manifold. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:348 / 371
页数:24
相关论文
共 29 条
[1]  
Abbondandolo A., 2001, Morse theory for Hamiltionian systems
[2]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF CONVEX HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :405-421
[3]  
CHANG KC, 1993, INFINITE DIMENSIONAL
[4]  
Coti-Zelati V., 1990, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V17, P569
[5]   GENERALIZED NEHARI MANIFOLD AND SEMILINEAR SCHRODINGER EQUATION WITH WEAK MONOTONICITY CONDITION ON THE NONLINEAR TERM [J].
De Paiva, Francisco Odair ;
Kryszewski, Wojciech ;
Szulkin, Andrzej .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4783-4794
[6]   The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems [J].
Dong, D ;
Long, YM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (07) :2619-2661
[7]   PERIODIC-SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
EKELAND, I ;
HOFER, H .
INVENTIONES MATHEMATICAE, 1985, 81 (01) :155-188
[8]  
Ekeland I., 1990, Convexity Methods in Hamilton Mechanics
[9]   Solutions of minimal period for even classical Hamiltonian systems [J].
Fei, GH ;
Kim, SK ;
Wang, TX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (03) :363-375
[10]   Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems [J].
Fei, GH ;
Kim, SK ;
Wang, TX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) :216-233